Liusuthu commited on
Commit
ea68477
Β·
verified Β·
1 Parent(s): 16f3774

Update app_utils.py

Browse files
Files changed (1) hide show
  1. app_utils.py +3 -158
app_utils.py CHANGED
@@ -108,7 +108,7 @@ def text_score(text):
108
  score=-prob*10
109
  else:
110
  score=prob*10
111
- print("from func:text_scoreβ€”β€”β€”β€”,text:"text,",score:",score)
112
  return text,score
113
 
114
  def speech_score(audio):
@@ -332,163 +332,8 @@ def video_score(video):
332
 
333
  ###########################################################################################################################
334
  # def video_score(video):
335
-
336
- # cap = cv2.VideoCapture(video)
337
- # w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
338
- # h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
339
- # fps = np.round(cap.get(cv2.CAP_PROP_FPS))
340
-
341
- # path_save_video_face = 'result_face.mp4'
342
- # vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
343
-
344
- # # path_save_video_hm = 'result_hm.mp4'
345
- # # vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
346
-
347
- # lstm_features = []
348
- # count_frame = 1
349
- # count_face = 0
350
- # probs = []
351
- # frames = []
352
- # last_output = None
353
- # last_heatmap = None
354
- # cur_face = None
355
-
356
- # with mp_face_mesh.FaceMesh(
357
- # max_num_faces=1,
358
- # refine_landmarks=False,
359
- # min_detection_confidence=0.5,
360
- # min_tracking_confidence=0.5) as face_mesh:
361
-
362
- # while cap.isOpened():
363
- # _, frame = cap.read()
364
- # if frame is None: break
365
-
366
- # frame_copy = frame.copy()
367
- # frame_copy.flags.writeable = False
368
- # frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
369
- # results = face_mesh.process(frame_copy)
370
- # frame_copy.flags.writeable = True
371
-
372
- # if results.multi_face_landmarks:
373
- # for fl in results.multi_face_landmarks:
374
- # startX, startY, endX, endY = get_box(fl, w, h)
375
- # cur_face = frame_copy[startY:endY, startX: endX]
376
-
377
- # if count_face%config_data.FRAME_DOWNSAMPLING == 0:
378
- # cur_face_copy = pth_processing(Image.fromarray(cur_face))
379
- # with torch.no_grad():
380
- # features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
381
-
382
- # # grayscale_cam = cam(input_tensor=cur_face_copy)
383
- # # grayscale_cam = grayscale_cam[0, :]
384
- # # cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
385
- # # cur_face_hm = np.float32(cur_face_hm) / 255
386
- # # heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
387
- # # last_heatmap = heatmap
388
-
389
- # if len(lstm_features) == 0:
390
- # lstm_features = [features]*10
391
- # else:
392
- # lstm_features = lstm_features[1:] + [features]
393
-
394
- # lstm_f = torch.from_numpy(np.vstack(lstm_features))
395
- # lstm_f = torch.unsqueeze(lstm_f, 0)
396
- # with torch.no_grad():
397
- # output = pth_model_dynamic(lstm_f).detach().numpy()
398
- # last_output = output
399
-
400
- # if count_face == 0:
401
- # count_face += 1
402
-
403
- # else:
404
- # if last_output is not None:
405
- # output = last_output
406
- # # heatmap = last_heatmap
407
-
408
- # elif last_output is None:
409
- # output = np.empty((1, 7))
410
- # output[:] = np.nan
411
-
412
- # probs.append(output[0])
413
- # frames.append(count_frame)
414
- # else:
415
- # if last_output is not None:
416
- # lstm_features = []
417
- # empty = np.empty((7))
418
- # empty[:] = np.nan
419
- # probs.append(empty)
420
- # frames.append(count_frame)
421
-
422
- # if cur_face is not None:
423
- # # heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)
424
-
425
- # cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
426
- # cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
427
- # cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
428
- # vid_writer_face.write(cur_face)
429
- # # vid_writer_hm.write(heatmap_f)
430
-
431
- # count_frame += 1
432
- # if count_face != 0:
433
- # count_face += 1
434
-
435
- # vid_writer_face.release()
436
- # # vid_writer_hm.release()
437
-
438
- # stat = statistics_plot(frames, probs)
439
-
440
- # if not stat:
441
- # return None, None
442
-
443
- # #for debug
444
- # print(type(frames))
445
- # print(frames)
446
- # print(type(probs))
447
- # print(probs)
448
- # # to calculate scores
449
- # nan=float('nan')
450
- # s1 = 0
451
- # s2 = 0
452
- # s3 = 0
453
- # s4 = 0
454
- # s5 = 0
455
- # s6 = 0
456
- # s7 = 0
457
- # frames_len=len(frames)
458
- # for i in range(frames_len):
459
- # if np.isnan(probs[i][0]):
460
- # frames_len=frames_len-1
461
- # else:
462
- # s1=s1+probs[i][0]
463
- # s2=s2+probs[i][1]
464
- # s3=s3+probs[i][2]
465
- # s4=s4+probs[i][3]
466
- # s5=s5+probs[i][4]
467
- # s6=s6+probs[i][5]
468
- # s7=s7+probs[i][6]
469
- # s1=s1/frames_len
470
- # s2=s2/frames_len
471
- # s3=s3/frames_len
472
- # s4=s4/frames_len
473
- # s5=s5/frames_len
474
- # s6=s6/frames_len
475
- # s7=s7/frames_len
476
- # scores=[s1,s2,s3,s4,s5,s6,s7]
477
- # scores_str=str(scores)
478
- # with open("local_data/data.txt",'a', encoding="utf8") as f:
479
- # f.write(scores_str+'\n')
480
-
481
- # with open("local_data/data.txt",'r', encoding="utf8") as f:
482
- # for i in f:
483
- # print(i)
484
-
485
- # score1=0*scores[0]-8*scores[1]+4*scores[2]+0*scores[3]+2*scores[4]+2*scores[5]+4*scores[6]
486
-
487
- # #trans the audio file
488
- # my_audio_clip = AudioFileClip(video)
489
- # my_audio_clip.write_audiofile("data/audio.wav",ffmpeg_params=["-ac","1"])
490
- # time.sleep(2)
491
-
492
  # return stat,score1,"data/audio.wav"
493
 
494
  # # #trans the audio file
 
108
  score=-prob*10
109
  else:
110
  score=prob*10
111
+ print("from func:text_scoreβ€”β€”β€”β€”,text:",text,",score:",score)
112
  return text,score
113
 
114
  def speech_score(audio):
 
332
 
333
  ###########################################################################################################################
334
  # def video_score(video):
335
+ #
336
+ # 。。。。。。。。。。。。。。。。。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337
  # return stat,score1,"data/audio.wav"
338
 
339
  # # #trans the audio file