Spaces:
Runtime error
Runtime error
Update consult.py
Browse files- consult.py +2 -111
consult.py
CHANGED
@@ -3,7 +3,7 @@ import soundfile as sf
|
|
3 |
import torchaudio
|
4 |
from speechbrain.pretrained.interfaces import foreign_class
|
5 |
|
6 |
-
from app_utils import video_score,
|
7 |
from authors import AUTHORS
|
8 |
|
9 |
# Importing necessary components for the Gradio app
|
@@ -46,116 +46,7 @@ ASR_model = ParaformerOffline()
|
|
46 |
vad = FSMNVad()
|
47 |
punc = CttPunctuator()
|
48 |
|
49 |
-
|
50 |
-
result = client.predict(
|
51 |
-
text, # str in '输入文字' Textbox component
|
52 |
-
api_name="/predict",
|
53 |
-
)
|
54 |
-
return result
|
55 |
-
|
56 |
-
|
57 |
-
def get_text_score(text):
|
58 |
-
string=text_api(text)
|
59 |
-
part1 = str.partition(string, r"text")
|
60 |
-
want1 = part1[2]
|
61 |
-
label = want1[4:6]
|
62 |
-
part2 = str.partition(string, r"probability")
|
63 |
-
want2 = part2[2]
|
64 |
-
prob = float(want2[3:-4])
|
65 |
-
return label, prob
|
66 |
-
|
67 |
-
def classify_continuous(audio):
|
68 |
-
print(type(audio))
|
69 |
-
print(audio)
|
70 |
-
sample_rate, signal = audio # 这是语音的输入
|
71 |
-
signal = signal.astype(np.float32)
|
72 |
-
signal /= np.max(np.abs(signal))
|
73 |
-
sf.write("data/a.wav", signal, sample_rate)
|
74 |
-
signal, sample_rate = torchaudio.load("data/a.wav")
|
75 |
-
signal1 = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(
|
76 |
-
signal
|
77 |
-
)
|
78 |
-
torchaudio.save("data/out.wav", signal1, 16000, encoding="PCM_S", bits_per_sample=16)
|
79 |
-
Audio = "data/out.wav"
|
80 |
-
speech, sample_rate = AudioReader.read_wav_file(Audio)
|
81 |
-
if signal == "none":
|
82 |
-
return "none", "none", "haha"
|
83 |
-
else:
|
84 |
-
segments = vad.segments_offline(speech)
|
85 |
-
text_results = ""
|
86 |
-
for part in segments:
|
87 |
-
_result = ASR_model.infer_offline(
|
88 |
-
speech[part[0] * 16 : part[1] * 16], hot_words="任意热词 空格分开"
|
89 |
-
)
|
90 |
-
text_results += punc.punctuate(_result)[0]
|
91 |
-
|
92 |
-
out_prob, score, index, text_lab = classifier.classify_batch(signal1)
|
93 |
-
print(type(out_prob.squeeze(0).numpy()))
|
94 |
-
print(out_prob.squeeze(0).numpy())
|
95 |
-
print(type(text_lab[-1]))
|
96 |
-
print(text_lab[-1])
|
97 |
-
return text_results, out_prob.squeeze(0).numpy(), text_lab[-1], Audio
|
98 |
-
|
99 |
-
|
100 |
-
#######################################################################
|
101 |
-
#规范函数,只管值输入输出:
|
102 |
-
def text_score(text):
|
103 |
-
string=text_api(text)
|
104 |
-
part1 = str.partition(string, r"text")
|
105 |
-
want1 = part1[2]
|
106 |
-
label = want1[4:6]
|
107 |
-
part2 = str.partition(string, r"probability")
|
108 |
-
want2 = part2[2]
|
109 |
-
prob = float(want2[3:-4])
|
110 |
-
if label=="正向":
|
111 |
-
score=-prob*10
|
112 |
-
else:
|
113 |
-
score=prob*10
|
114 |
-
return text,score
|
115 |
-
|
116 |
-
def speech_score(audio):
|
117 |
-
print(type(audio))
|
118 |
-
print(audio)
|
119 |
-
sample_rate, signal = audio # 这是语音的输入
|
120 |
-
signal = signal.astype(np.float32)
|
121 |
-
signal /= np.max(np.abs(signal))
|
122 |
-
sf.write("data/a.wav", signal, sample_rate)
|
123 |
-
signal, sample_rate = torchaudio.load("data/a.wav")
|
124 |
-
signal1 = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(
|
125 |
-
signal
|
126 |
-
)
|
127 |
-
torchaudio.save("data/out.wav", signal1, 16000, encoding="PCM_S", bits_per_sample=16)
|
128 |
-
Audio = "data/out.wav"
|
129 |
-
speech, sample_rate = AudioReader.read_wav_file(Audio)
|
130 |
-
if signal == "none":
|
131 |
-
return "none", "none", "haha"
|
132 |
-
else:
|
133 |
-
segments = vad.segments_offline(speech)
|
134 |
-
text_results = ""
|
135 |
-
for part in segments:
|
136 |
-
_result = ASR_model.infer_offline(
|
137 |
-
speech[part[0] * 16 : part[1] * 16], hot_words="任意热词 空格分开"
|
138 |
-
)
|
139 |
-
text_results += punc.punctuate(_result)[0]
|
140 |
-
|
141 |
-
out_prob, score, index, text_lab = classifier.classify_batch(signal1)
|
142 |
-
print(type(out_prob.squeeze(0).numpy()))
|
143 |
-
print(out_prob.squeeze(0).numpy())
|
144 |
-
print(type(text_lab[-1]))
|
145 |
-
print(text_lab[-1])
|
146 |
-
#return text_results, out_prob.squeeze(0).numpy(), text_lab[-1], Audio
|
147 |
-
prob=out_prob.squeeze(0).numpy()
|
148 |
-
print(prob)
|
149 |
-
score2=10*prob[0]-10*prob[1]
|
150 |
-
print("score2",score2)
|
151 |
-
print(text_lab[-1])
|
152 |
-
text,score1=text_score4(text_results)
|
153 |
-
# text_emo=str(get_text_score(text_results))
|
154 |
-
print(text,score1)
|
155 |
-
score=score1+score2
|
156 |
-
|
157 |
-
return text,score
|
158 |
-
#######################################################################
|
159 |
#第四题专用函数:
|
160 |
def text_score4(text):
|
161 |
text,score=text_score(text)
|
|
|
3 |
import torchaudio
|
4 |
from speechbrain.pretrained.interfaces import foreign_class
|
5 |
|
6 |
+
from app_utils import video_score,speech_score,text_score
|
7 |
from authors import AUTHORS
|
8 |
|
9 |
# Importing necessary components for the Gradio app
|
|
|
46 |
vad = FSMNVad()
|
47 |
punc = CttPunctuator()
|
48 |
|
49 |
+
#########################################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
#第四题专用函数:
|
51 |
def text_score4(text):
|
52 |
text,score=text_score(text)
|