Liusuthu's picture
Update app_utils.py
a3955bf verified
raw
history blame
15.2 kB
import torch
import time
import numpy as np
import mediapipe as mp
from PIL import Image
import cv2
from pytorch_grad_cam.utils.image import show_cam_on_image
# Importing necessary components for the Gradio app
from model import pth_model_static, pth_model_dynamic, cam, pth_processing
from face_utils import get_box, display_info
from config import DICT_EMO, config_data
from plot import statistics_plot
from moviepy.editor import AudioFileClip
import soundfile as sf
import torchaudio
from speechbrain.pretrained.interfaces import foreign_class
from paraformer import AudioReader, CttPunctuator, FSMNVad, ParaformerOffline
from gradio_client import Client
##############################################################################################
client = Client("Liusuthu/TextDepression")
mp_face_mesh = mp.solutions.face_mesh
classifier = foreign_class(
source="pretrained_models/local-speechbrain/emotion-recognition-wav2vec2-IEMOCAP", # ".\\emotion-recognition-wav2vec2-IEMOCAP"
pymodule_file="custom_interface.py",
classname="CustomEncoderWav2vec2Classifier",
savedir="pretrained_models/local-speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
)
ASR_model = ParaformerOffline()
vad = FSMNVad()
punc = CttPunctuator()
#########################################################################################
def text_api(text:str):
result = client.predict(
text, # str in '输入文字' Textbox component
api_name="/predict",
)
return result
def classify_continuous(audio):
print(type(audio))
print(audio)
sample_rate, signal = audio # 这是语音的输入
signal = signal.astype(np.float32)
signal /= np.max(np.abs(signal))
sf.write("data/a.wav", signal, sample_rate)
signal, sample_rate = torchaudio.load("data/a.wav")
signal1 = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(
signal
)
torchaudio.save("data/out.wav", signal1, 16000, encoding="PCM_S", bits_per_sample=16)
Audio = "data/out.wav"
speech, sample_rate = AudioReader.read_wav_file(Audio)
if signal == "none":
return "none", "none", "haha"
else:
segments = vad.segments_offline(speech)
text_results = ""
for part in segments:
_result = ASR_model.infer_offline(
speech[part[0] * 16 : part[1] * 16], hot_words="任意热词 空格分开"
)
text_results += punc.punctuate(_result)[0]
out_prob, score, index, text_lab = classifier.classify_batch(signal1)
print(type(out_prob.squeeze(0).numpy()))
print(out_prob.squeeze(0).numpy())
print(type(text_lab[-1]))
print(text_lab[-1])
return text_results, out_prob.squeeze(0).numpy(), text_lab[-1], Audio
def preprocess_image_and_predict(inp):
return None, None, None
def preprocess_video_and_predict(video):
return None, None, None, None
#to return scores
###########################################################################################################################
def video_score(video):
cap = cv2.VideoCapture(video)
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
path_save_video_face = 'result_face.mp4'
vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
# path_save_video_hm = 'result_hm.mp4'
# vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
lstm_features = []
count_frame = 1
count_face = 0
probs = []
frames = []
last_output = None
last_heatmap = None
cur_face = None
with mp_face_mesh.FaceMesh(
max_num_faces=1,
refine_landmarks=False,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as face_mesh:
while cap.isOpened():
_, frame = cap.read()
if frame is None: break
frame_copy = frame.copy()
frame_copy.flags.writeable = False
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
results = face_mesh.process(frame_copy)
frame_copy.flags.writeable = True
if results.multi_face_landmarks:
for fl in results.multi_face_landmarks:
startX, startY, endX, endY = get_box(fl, w, h)
cur_face = frame_copy[startY:endY, startX: endX]
if count_face%config_data.FRAME_DOWNSAMPLING == 0:
cur_face_copy = pth_processing(Image.fromarray(cur_face))
with torch.no_grad():
features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
# grayscale_cam = cam(input_tensor=cur_face_copy)
# grayscale_cam = grayscale_cam[0, :]
# cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
# cur_face_hm = np.float32(cur_face_hm) / 255
# heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
# last_heatmap = heatmap
if len(lstm_features) == 0:
lstm_features = [features]*10
else:
lstm_features = lstm_features[1:] + [features]
lstm_f = torch.from_numpy(np.vstack(lstm_features))
lstm_f = torch.unsqueeze(lstm_f, 0)
with torch.no_grad():
output = pth_model_dynamic(lstm_f).detach().numpy()
last_output = output
if count_face == 0:
count_face += 1
else:
if last_output is not None:
output = last_output
# heatmap = last_heatmap
elif last_output is None:
output = np.empty((1, 7))
output[:] = np.nan
probs.append(output[0])
frames.append(count_frame)
else:
if last_output is not None:
lstm_features = []
empty = np.empty((7))
empty[:] = np.nan
probs.append(empty)
frames.append(count_frame)
if cur_face is not None:
# heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)
cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
vid_writer_face.write(cur_face)
# vid_writer_hm.write(heatmap_f)
count_frame += 1
if count_face != 0:
count_face += 1
vid_writer_face.release()
# vid_writer_hm.release()
stat = statistics_plot(frames, probs)
if not stat:
return None, None
#for debug
print(type(frames))
print(frames)
print(type(probs))
print(probs)
# to calculate scores
nan=float('nan')
s1 = 0
s2 = 0
s3 = 0
s4 = 0
s5 = 0
s6 = 0
s7 = 0
frames_len=len(frames)
for i in range(frames_len):
if np.isnan(probs[i][0]):
frames_len=frames_len-1
else:
s1=s1+probs[i][0]
s2=s2+probs[i][1]
s3=s3+probs[i][2]
s4=s4+probs[i][3]
s5=s5+probs[i][4]
s6=s6+probs[i][5]
s7=s7+probs[i][6]
s1=s1/frames_len
s2=s2/frames_len
s3=s3/frames_len
s4=s4/frames_len
s5=s5/frames_len
s6=s6/frames_len
s7=s7/frames_len
scores=[s1,s2,s3,s4,s5,s6,s7]
scores_str=str(scores)
with open("local_data/data.txt",'a', encoding="utf8") as f:
f.write(scores_str+'\n')
with open("local_data/data.txt",'r', encoding="utf8") as f:
for i in f:
print(i)
score1=0*scores[0]-8*scores[1]+4*scores[2]+0*scores[3]+2*scores[4]+2*scores[5]+4*scores[6]
#trans the audio file
my_audio_clip = AudioFileClip(video)
my_audio_clip.write_audiofile("data/audio.wav",ffmpeg_params=["-ac","1"])
time.sleep(2)
return stat,score1,"data/audio.wav"
# #trans the audio file
# my_audio_clip = AudioFileClip(video)
# my_audio_clip.write_audiofile("newaudio.wav",ffmpeg_params=["-ac","1"])
# # Audio="data/audio.wav"
# # text,prob2,label,path=classify_continuous(Audio)
# #0是抑郁概率,1是非抑郁概率
# # score2=10*prob2[0]-10*prob[1]
# # print(prob2,label)
# # score2=0
# # print("score2=",score2)
# # text_result="demo"
# # # text_result=text_api(text)
# # print(text_result)
# return score1
#打分函数
def video_test(video):
cap = cv2.VideoCapture(video)
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
path_save_video_face = 'result_face.mp4'
vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
# path_save_video_hm = 'result_hm.mp4'
# vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
lstm_features = []
count_frame = 1
count_face = 0
probs = []
frames = []
last_output = None
last_heatmap = None
cur_face = None
with mp_face_mesh.FaceMesh(
max_num_faces=1,
refine_landmarks=False,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as face_mesh:
while cap.isOpened():
_, frame = cap.read()
if frame is None: break
frame_copy = frame.copy()
frame_copy.flags.writeable = False
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
results = face_mesh.process(frame_copy)
frame_copy.flags.writeable = True
if results.multi_face_landmarks:
for fl in results.multi_face_landmarks:
startX, startY, endX, endY = get_box(fl, w, h)
cur_face = frame_copy[startY:endY, startX: endX]
if count_face%config_data.FRAME_DOWNSAMPLING == 0:
cur_face_copy = pth_processing(Image.fromarray(cur_face))
with torch.no_grad():
features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
# grayscale_cam = cam(input_tensor=cur_face_copy)
# grayscale_cam = grayscale_cam[0, :]
# cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
# cur_face_hm = np.float32(cur_face_hm) / 255
# heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
# last_heatmap = heatmap
if len(lstm_features) == 0:
lstm_features = [features]*10
else:
lstm_features = lstm_features[1:] + [features]
lstm_f = torch.from_numpy(np.vstack(lstm_features))
lstm_f = torch.unsqueeze(lstm_f, 0)
with torch.no_grad():
output = pth_model_dynamic(lstm_f).detach().numpy()
last_output = output
if count_face == 0:
count_face += 1
else:
if last_output is not None:
output = last_output
# heatmap = last_heatmap
elif last_output is None:
output = np.empty((1, 7))
output[:] = np.nan
probs.append(output[0])
frames.append(count_frame)
else:
if last_output is not None:
lstm_features = []
empty = np.empty((7))
empty[:] = np.nan
probs.append(empty)
frames.append(count_frame)
if cur_face is not None:
# heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)
cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
vid_writer_face.write(cur_face)
# vid_writer_hm.write(heatmap_f)
count_frame += 1
if count_face != 0:
count_face += 1
vid_writer_face.release()
# vid_writer_hm.release()
stat = statistics_plot(frames, probs)
if not stat:
return None, None
#for debug
print(type(frames))
print(frames)
print(type(probs))
print(probs)
# to calculate scores
nan=float('nan')
s1 = 0
s2 = 0
s3 = 0
s4 = 0
s5 = 0
s6 = 0
s7 = 0
frames_len=len(frames)
for i in range(frames_len):
if np.isnan(probs[i][0]):
frames_len=frames_len-1
else:
s1=s1+probs[i][0]
s2=s2+probs[i][1]
s3=s3+probs[i][2]
s4=s4+probs[i][3]
s5=s5+probs[i][4]
s6=s6+probs[i][5]
s7=s7+probs[i][6]
s1=s1/frames_len
s2=s2/frames_len
s3=s3/frames_len
s4=s4/frames_len
s5=s5/frames_len
s6=s6/frames_len
s7=s7/frames_len
scores=[s1,s2,s3,s4,s5,s6,s7]
scores_str=str(scores)
score1=0*scores[0]-8*scores[1]+4*scores[2]+0*scores[3]+2*scores[4]+2*scores[5]+4*scores[6]
print("score1=",score1)
with open("local_data/data.txt",'a', encoding="utf8") as f:
f.write(scores_str+'\n')
with open("local_data/data.txt",'r', encoding="utf8") as f:
for i in f:
print(i)
#trans the audio file
my_audio_clip = AudioFileClip(video)
my_audio_clip.write_audiofile("data/audio.wav",ffmpeg_params=["-ac","1"])
audio=gr.Audio("data/audio.wav")
text,prob2,label,path=classify_continuous(audio)
score2=10*prob2[0]-10*prob[1]
print(prob2,label,path)
print("score2=",score2)
text_result=text_api(text)
print(text_result)
return stat,score1,"data/audio.wav"