Spaces:
Runtime error
Runtime error
File size: 16,199 Bytes
51fa915 7950af4 51fa915 7950af4 0329c7d be20cf1 0329c7d be20cf1 0329c7d be20cf1 0329c7d be20cf1 0329c7d 7950af4 51fa915 7950af4 51fa915 7950af4 51fa915 7950af4 51fa915 7950af4 51fa915 7950af4 ab762a2 7950af4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import numpy as np
import soundfile as sf
import torchaudio
from speechbrain.pretrained.interfaces import foreign_class
from app_utils import video_score,video_test
from authors import AUTHORS
# Importing necessary components for the Gradio app
from description import DESCRIPTION_DYNAMIC # , DESCRIPTION_STATIC
# import scipy.io.wavfile as wav
from paraformer import AudioReader, CttPunctuator, FSMNVad, ParaformerOffline
from gradio_client import Client
import gradio as gr
import os
from consult_func import (
advice,
visibility,
visibility3,
visibility4,
visibility_choice,
visibility_choice2,
visibility_choice3,
visibility_choice4,
visibility_choice5,
)
os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
client = Client("Liusuthu/TextDepression")
classifier = foreign_class(
source="pretrained_models/local-speechbrain/emotion-recognition-wav2vec2-IEMOCAP", # ".\\emotion-recognition-wav2vec2-IEMOCAP"
pymodule_file="custom_interface.py",
classname="CustomEncoderWav2vec2Classifier",
savedir="pretrained_models/local-speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
)
ASR_model = ParaformerOffline()
vad = FSMNVad()
punc = CttPunctuator()
def text_api(text:str):
result = client.predict(
text, # str in '输入文字' Textbox component
api_name="/predict",
)
return result
def get_text_score(text):
string=text_api(text)
part1 = str.partition(string, r"text")
want1 = part1[2]
label = want1[4:6]
part2 = str.partition(string, r"probability")
want2 = part2[2]
prob = float(want2[3:-4])
return label, prob
def classify_continuous(audio):
print(type(audio))
print(audio)
sample_rate, signal = audio # 这是语音的输入
signal = signal.astype(np.float32)
signal /= np.max(np.abs(signal))
sf.write("data/a.wav", signal, sample_rate)
signal, sample_rate = torchaudio.load("data/a.wav")
signal1 = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(
signal
)
torchaudio.save("data/out.wav", signal1, 16000, encoding="PCM_S", bits_per_sample=16)
Audio = "data/out.wav"
speech, sample_rate = AudioReader.read_wav_file(Audio)
if signal == "none":
return "none", "none", "haha"
else:
segments = vad.segments_offline(speech)
text_results = ""
for part in segments:
_result = ASR_model.infer_offline(
speech[part[0] * 16 : part[1] * 16], hot_words="任意热词 空格分开"
)
text_results += punc.punctuate(_result)[0]
out_prob, score, index, text_lab = classifier.classify_batch(signal1)
print(type(out_prob.squeeze(0).numpy()))
print(out_prob.squeeze(0).numpy())
print(type(text_lab[-1]))
print(text_lab[-1])
return text_results, out_prob.squeeze(0).numpy(), text_lab[-1], Audio
#######################################################################
#规范函数,只管值输入输出:
def text_score(text):
string=text_api(text)
part1 = str.partition(string, r"text")
want1 = part1[2]
label = want1[4:6]
part2 = str.partition(string, r"probability")
want2 = part2[2]
prob = float(want2[3:-4])
if label=="正向":
score=-prob*10
else:
score=prob*10
return text,score
def speech_score(audio):
print(type(audio))
print(audio)
sample_rate, signal = audio # 这是语音的输入
signal = signal.astype(np.float32)
signal /= np.max(np.abs(signal))
sf.write("data/a.wav", signal, sample_rate)
signal, sample_rate = torchaudio.load("data/a.wav")
signal1 = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(
signal
)
torchaudio.save("data/out.wav", signal1, 16000, encoding="PCM_S", bits_per_sample=16)
Audio = "data/out.wav"
speech, sample_rate = AudioReader.read_wav_file(Audio)
if signal == "none":
return "none", "none", "haha"
else:
segments = vad.segments_offline(speech)
text_results = ""
for part in segments:
_result = ASR_model.infer_offline(
speech[part[0] * 16 : part[1] * 16], hot_words="任意热词 空格分开"
)
text_results += punc.punctuate(_result)[0]
out_prob, score, index, text_lab = classifier.classify_batch(signal1)
print(type(out_prob.squeeze(0).numpy()))
print(out_prob.squeeze(0).numpy())
print(type(text_lab[-1]))
print(text_lab[-1])
#return text_results, out_prob.squeeze(0).numpy(), text_lab[-1], Audio
prob=out_prob.squeeze(0).numpy()
print(prob)
score2=10*prob[0]-10*prob[1]
print("score2",score2)
print(text_lab[-1])
text,score1=text_score4(text_results)
# text_emo=str(get_text_score(text_results))
print(text,score1)
score=score1+score2
return text,score
#######################################################################
#第四题专用函数:
def text_score4(text):
text,score=text_score(text)
return text,score,gr.Column(visible=True)
def speech_score4(audio):
text,score=speech_score(audio)
return text,score,gr.Column(visible=True)
#####################################################################
# constants
schema = "情感倾向[正向,负向]" # Define the schema for sentence-level sentiment classification
# 定义音频模态下权重
weight_speech = 0.2
weight_text = 0.8
# 定义视频模态下权重
weight_video = 0.3
weight_speech2 = 0.1
weight_text2 = 0.6
# scores
score1 = 0 # 第一道问答题:你这段时间真的很不容易,愿意和我说说吗?说什么都可以,也许倾诉出来会好一些呢
score2 = 0 # 第二道问答题:你有什么兴趣爱好吗?平常都喜欢干什么事情呢?愿意和我说说吗?
score3 = 0 # 第三道问答题:最近状态
# video model
# speech model
# text model
# ie = Taskflow('information_extraction', schema=schema, model='uie-base')
# 以下为调用语音模型
with gr.Blocks() as consult:
gr.Markdown(
"欢迎来到这里,接下来我们来放松地聊聊天,你只要如实完整地回答我的问题就好了。"
)
btn1 = gr.Button("开始")
with gr.Column(visible=False) as questions:
# 睡眠问题
title1 = gr.Markdown("# 睡眠")
radio1 = gr.Radio(
["充足", "不足"],
label="你最近睡眠还充足吗?",
type="index",
interactive=True,
)
with gr.Column(visible=False) as q1_1:
radio2 = gr.Radio(
["存在", "不存在"],
label="你会存在嗜睡的情况吗?比如容易一直睡过整个上午甚至一直持续睡到下午?",
interactive=True,
)
with gr.Column(visible=False) as q1_2:
radio3 = gr.Radio(
["不存在", "失眠", "早醒"],
label="你是否存在失眠或早醒的情况?",
interactive=True,
)
adv1 = gr.Textbox(visible=False)
# 饮食问题
title2 = gr.Markdown("# 饮食", visible=False)
radio4 = gr.Radio(
[
"食欲正常,没有体重上的明显变化",
"食欲亢进,体重增加",
"食欲不振,体重减轻",
],
type="index",
label="你最近食欲如何?有任何体重上的变化吗?",
visible=False,
interactive=True,
)
# 情绪问题
title3 = gr.Markdown("# 情绪", visible=False)
radio5 = gr.Radio(
["好", "不好"], label="你最近心情还好吗?", visible=False, interactive=True
)
radio6 = gr.Radio(
["一周以内", "一周至两周", "两周以上"],
label="你心情不好持续了多长时间呢?",
visible=False,
interactive=True,
)
with gr.Column(visible=False) as q3_2:
gr.Markdown(
"你这段时间真的很不容易,愿意和我说说吗?说什么都可以,也许倾诉出来会好一些呢"
)
radio7 = gr.Radio(
["文本", "语音", "视频"],
label="请选择以哪种方式回答",
type="index",
interactive=True,
)
with gr.Column(visible=False) as ans3_1: # 文本回答
text3_1 = gr.Textbox(interactive=True)
btn3_1 = gr.Button("抱抱你")
# 请把audio3_2换成Audio组件
with gr.Column(visible=False) as ans3_2: # 语音回答
audio3_2 = gr.Textbox(
label="抑郁概率", interactive=True
) # 对应out_prob.squeeze(0).numpy()[0]
btn3_2 = gr.Button("抱抱你")
# 请把video3_3换成Video组件
with gr.Column(visible=False) as ans3_3: # 视频回答
with gr.Row() as video3_3:
# 我也不知道以下这些概率如何调用,你知道就好
emo0_3_3 = gr.Textbox(label="Neutral", interactive=True)
emo1_3_3 = gr.Textbox(label="Happiness", interactive=True)
emo2_3_3 = gr.Textbox(label="Sadness", interactive=True)
emo3_3_3 = gr.Textbox(label="Surprise", interactive=True)
emo4_3_3 = gr.Textbox(label="Fear", interactive=True)
emo5_3_3 = gr.Textbox(label="Disgust", interactive=True)
emo6_3_3 = gr.Textbox(label="Anger", interactive=True)
btn3_3 = gr.Button("抱抱你")
# 自杀倾向问题
radio8 = gr.Radio(
["想过", "没想过"],
label="你想过死吗?",
visible=False,
type="index",
interactive=True,
)
radio9 = gr.Radio(
["想过", "没想过"],
label="那你想过怎么死吗?",
visible=False,
type="index",
interactive=True,
)
radio10 = gr.Radio(
[
"没想过",
"想过,没想过具体时间和地点",
"想过具体做法,时间和地点,没实践过",
"实践过",
],
label="那你想过具体的做法吗?",
visible=False,
)
dead_hug = gr.Markdown(
"很抱歉听到这些话,我们非常理解并关心你的情绪,我们明白产生自杀念头的原因是复杂的,并不是你的过错。如果你愿意的话,可以多来找我们聊聊天,我们愿意充当你的知心好友,并且承诺对你说的所有话严格保密。如果可以的话,我们还建议你积极寻求专业心理医生的帮助,和他们聊聊天,讲讲自己的感受。加油!\n",
visible=False,
)
# 兴趣爱好
with gr.Column(visible=False) as q4:
title4 = gr.Markdown("# 兴趣爱好")
gr.Markdown("你有什么兴趣爱好吗?平常都喜欢干什么事情呢?愿意和我说说吗?")
radio11 = gr.Radio(
["文本", "语音", "视频"],
label="请选择以哪种方式回答",
type="index",
interactive=True,
)
with gr.Column(visible=False) as ans4_1:
text4_1 = gr.Textbox(interactive=True)
btn4_1 = gr.Button("继续")
result4_11 = gr.Textbox(label="语音结果4_1")
result4_12 = gr.Textbox(label="分数结果4_1")
# 请把audio4_2换成Audio组件
with gr.Column(visible=False) as ans4_2:
audio4_2 = gr.Audio(
label="语音录制", interactive=True, sources=["microphone"]
) # 对应out_prob.squeeze(0).numpy()[0]
btn4_2 = gr.Button("继续")
result4_21 = gr.Textbox(label="结果4_2")
result4_22 = gr.Textbox(label="分数结果4_2")
# 请把video4_3换成Video组件
with gr.Column(visible=False) as ans4_3:
video4_3 = gr.Video(
sources=["webcam", "upload"],
interactive=True,
)
btn4_3 = gr.Button("继续")
result4_31 = gr.Textbox(label="结果4_3")
result4_32 = gr.Textbox(label="分数结果4_3")
# 针对无价值感、无意义感、无力感
with gr.Column(visible=False) as q5:
title5 = gr.Markdown("# 近期情况")
gr.Markdown(
"你愿意和我聊聊你最近都喜欢干些什么,或者有什么事情让你很沉浸,感到开心或者觉得很有意义吗?还有那些让你觉得自己很厉害,很有成就感的事情,比如说你做成了什么有难度的事情或者帮助了谁?什么都可以哦"
)
radio12 = gr.Radio(
["文本", "语音", "视频"],
label="请选择以哪种方式回答",
type="index",
interactive=True,
)
with gr.Column(visible=False) as ans5_1:
text5_1 = gr.Textbox(interactive=True)
btn5_1 = gr.Button("提交")
result5_1 = gr.Textbox(label="结果5_1")
# 请把audio5_2换成Audio组件
with gr.Column(visible=False) as ans5_2:
audio5_2 = gr.Audio(
label="语音录制", interactive=True
) # 对应out_prob.squeeze(0).numpy()[0]
btn5_2 = gr.Button("提交")
result5_2 = gr.Textbox(label="结果5_2")
# 请把video5_3换成Video组件
with gr.Column(visible=False) as ans5_3:
# score = gr.Textbox(label="得分")
video5_3=gr.Video(sources=["webcam", "upload"],interactive=True,)
btn5_3 = gr.Button("提交")
result5_3 = gr.Textbox(label="结果5_3")
title6 = gr.Markdown("# 咨询总结与建议", visible=False)
final_score = gr.Textbox(visible=False, interactive=False)
adv = gr.Textbox(label="", visible=False)
btn1.click(visibility, outputs=questions)
radio1.change(visibility_choice, radio1, [q1_1, q1_2])
radio2.change(visibility3, outputs=[title2, radio4])
radio3.change(visibility3, outputs=[title2, radio4])
radio4.change(visibility3, outputs=[title3, radio5])
radio5.change(visibility_choice3, radio5, [radio6, q3_2, q4])
radio6.change(visibility, outputs=q3_2)
radio7.change(visibility_choice2, radio7, [ans3_1, ans3_2, ans3_3])
btn3_1.click(visibility_choice5, text3_1, [radio8, q4])
# 关于btn3_2,btn3_3:请你设计一个函数把语音/视频中文本提取出来,然后经过keyword函数判定来决定要不要出现radio8
radio8.change(visibility_choice4, radio8, [radio9, q4])
radio9.change(visibility_choice4, radio9, [radio10, q4])
radio10.change(visibility, outputs=q4)
radio10.change(visibility4, outputs=dead_hug)
radio11.change(visibility_choice2, radio11, [ans4_1, ans4_2, ans4_3])
btn4_1.click(text_score4,inputs=text4_1, outputs=[result4_11,result4_12,q5])
btn4_2.click(speech_score4, inputs=audio4_2, outputs=[result4_21,result4_22,q5])
btn4_3.click(visibility, outputs=q5)
radio12.change(visibility_choice2, radio12, [ans5_1, ans5_2, ans5_3])
btn5_1.click(
advice,
[
radio1,
radio2,
radio3,
radio4,
radio5,
radio6,
text3_1,
radio8,
radio9,
radio10,
],
[title6, final_score, adv],
)
# btn5_2.click(visibility,outputs=q5)
# btn5_3.click(visibility,outputs=q5)
|