File size: 2,856 Bytes
d246ded
 
 
 
 
 
31b3936
d246ded
31b3936
 
 
 
d246ded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31b3936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c35d3
d246ded
e163807
d246ded
 
 
 
 
 
 
 
 
31b3936
d246ded
 
 
 
 
e163807
d246ded
31b3936
d246ded
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os

# import random
import time

import gradio as gr
from openai import OpenAI


OpenAI.api_key = os.getenv("OPENAI_API_KEY")
api_key = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=api_key)


os.environ["no_proxy"] = "localhost,127.0.0.1,::1"


def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)


def add_text(history, text):
    history = history + [(text, None)]
    return history, gr.Textbox(value="", interactive=False)


def add_file(history, file):
    history = history + [((file.name,), None)]
    return history


def bot(history):
    response = "**That's cool!**"
    history[-1][1] = ""
    for character in response:
        history[-1][1] += character
        time.sleep(0.05)
        yield history


def predict(message, history):
    history_openai_format = []
    history_openai_format.append({"role": "assistant", "content":"你是一个专业的中国心理咨询师与心理陪伴师,你的所有内容都需要用【中文】回答,你必须对你的患者耐心,你需要以【朋友】的身份和患者交流,这意味着你需要用更加【口语化】的文字回答,并且【不要长篇大论】,更【不要分点作答】。可以偶尔针对用户的回答进行【提问】,并给予必要的【建议和引导】。"})
    for human, assistant in history:
        history_openai_format.append({"role": "user", "content": human })
        history_openai_format.append({"role": "assistant", "content":assistant})
    history_openai_format.append({"role": "user", "content": message})
  
    response = client.chat.completions.create(model='gpt-3.5-turbo',
       messages= history_openai_format,
        temperature=1.0,
        stream=True)

    partial_message = ""
    for chunk in response:
        if chunk.choices[0].delta.content is not None:
              partial_message = partial_message + chunk.choices[0].delta.content
              yield partial_message




with gr.Blocks() as TESTCHAT:
    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        bubble_full_width=False,
        # avatar_images=(None, (os.path.join(os.path.dirname(__file__), "avatar.png"))),
    )

    with gr.Row():
        txt = gr.Textbox(
            scale=4,
            show_label=False,
            placeholder="在此处输入文字...",
            container=False,
        )
        btn = gr.UploadButton("📁", file_types=["image", "video", "audio"])

    txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
        bot, chatbot, chatbot, api_name="bot_response"
    )
        
    txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
    file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False).then(
        bot, chatbot, chatbot
    )

    chatbot.like(print_like_dislike, None, None)