File size: 11,630 Bytes
d72c37e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import imageio
import numpy as np

import glob
import sys
from typing import Any
sys.path.insert(1, '.')

import argparse
from pytorch_lightning import seed_everything
from PIL import Image
import torch
from operators import GaussialBlurOperator
from utils import get_rank
from torchvision.ops import masks_to_boxes
from matfusion import MateralDiffusion
from loguru import logger

__MAX_BATCH__ = 4 # 4 for A10

def init_model(ckpt_path, ddim, gpu_id):
    # find config
    configs = os.listdir(f'{ckpt_path}/configs')
    model_config = [config for config in configs if "project.yaml" in config][0]
    sds_loss_class = MateralDiffusion(device=gpu_id, fp16=True,
                        config=f'{ckpt_path}/configs/{model_config}',
                        ckpt=f'{ckpt_path}/checkpoints/last.ckpt', vram_O=False, 
                        t_range=[0.001, 0.02], opt=None, use_ddim=ddim)
    return sds_loss_class

def images_spliter(image, seg_h, seg_w, padding_pixel, padding_val, overlaps=1):
    # split the input images along height and weidth by 
    # return a list of images
    h, w, c = image.shape
    h = h - (h%(seg_h*overlaps))
    w = w - (w%(seg_w*overlaps))

    h_crop = h // seg_h
    w_crop = w // seg_w
    images = []
    positions = []
    img_padded = torch.zeros(h+padding_pixel*2, w+padding_pixel*2, 3, device=image.device) + padding_val
    img_padded[padding_pixel:h+padding_pixel, padding_pixel:w+padding_pixel, :] = image[:h, :w]

    # overlapped sampling
    seg_h = np.round((h - h_crop) / h_crop * overlaps).astype(int) + 1
    seg_w = np.round((w - w_crop) / w_crop * overlaps).astype(int) + 1

    h_step = np.round(h_crop / overlaps).astype(int)
    w_step = np.round(w_crop / overlaps).astype(int)
    # print(f"h_step: {h_step}, seg_h: {seg_h}, w_step: {w_step}, seg_w: {seg_w}, img_padded: {img_padded.shape}, image[:h, :w]: {image[:h, :w].shape}")

    for ind_i in range(0,seg_h):
        i = ind_i * h_step
        for ind_j in range(0,seg_w):
            j = ind_j * w_step
            img_ = img_padded[i:i+h_crop+padding_pixel*2, j:j+w_crop+padding_pixel*2, :]
            images.append(img_)
            positions.append(torch.FloatTensor([i-padding_pixel, j-padding_pixel]).reshape(2))
    return torch.stack(images, dim=0), torch.stack(positions, dim=0), seg_h, seg_w

class InferenceModel():
    def __init__(self, ckpt_path, use_ddim, gpu_id=0):
        self.model = init_model(ckpt_path, use_ddim, gpu_id=gpu_id)
        self.gpu_id = gpu_id
        self.split_hw = [1,1]

        self.padding = 0
        self.padding_crop = 0

        self.results_list = None
        self.results_output_list = []
        self.image_sizes_list = []

    def parse_item(self, img_ori, mask_img_ori, guid_images):
        # if mask_img_ori is None:
        #     mask_img_ori = read_img(input_name, read_alpha=True)
        #     # ensure background is white, same as training data
        #     img_ori[~(mask_img_ori[..., 0] > 0.5)] = 1
        img_ori[~(mask_img_ori[..., 0] > 0.5)] = 1
        use_true_mask = (self.split_hw[0] * self.split_hw[1]) <= 1
        self.ori_hw = list(img_ori.shape)

        # mask cropping
        min_max_uv = masks_to_boxes(mask_img_ori[None, ..., -1] > 0.5).long()
        self.min_uv, self.max_uv = min_max_uv[0, ..., [1,0]], min_max_uv[0, ..., [3,2]]+1
        # print(self.min_uv, self.max_uv)

        mask_img = mask_img_ori[self.min_uv[0]:self.max_uv[0], self.min_uv[1]:self.max_uv[1]]
        img = img_ori[self.min_uv[0]:self.max_uv[0], self.min_uv[1]:self.max_uv[1]]

        image_size = list(img.shape)
        if not use_true_mask:
            # for cropping boarder
            self.max_uv[0] = self.max_uv[0] - ((self.max_uv[0]-self.min_uv[0])%(self.split_hw[0]*self.split_overlap))
            self.max_uv[1] = self.max_uv[1] - ((self.max_uv[1]-self.min_uv[1])%(self.split_hw[1]*self.split_overlap))

        mask_img = mask_img_ori[self.min_uv[0]:self.max_uv[0], self.min_uv[1]:self.max_uv[1]]
        img = img_ori[self.min_uv[0]:self.max_uv[0], self.min_uv[1]:self.max_uv[1]]

        image_size = list(img.shape)


        if not use_true_mask:
            mask_img = torch.ones_like(mask_img)
        mask_img, _ = images_spliter(mask_img[..., [0, 0, 0]], self.split_hw[0], self.split_hw[1], self.padding, not use_true_mask, self.split_overlap)[:2]

        img, position_indexes, seg_h, seg_w = images_spliter(img, self.split_hw[0], self.split_hw[1], self.padding, 1, self.split_overlap)
        self.split_hw_overlapped = [seg_h, seg_w]

        logger.info(f"Spliting Size: {image_size}, splits: {self.split_hw}, Overlapped: {self.split_hw_overlapped}")

        if guid_images is None:
            guid_images = torch.zeros_like(img)
        else:
            guid_images = guid_images[self.min_uv[0]:self.max_uv[0], self.min_uv[1]:self.max_uv[1]]
            guid_images, _ = images_spliter(guid_images, self.split_hw[0], self.split_hw[1], self.padding, 1, self.split_overlap)[:2]

        return guid_images, img, mask_img[..., :1], image_size, position_indexes

    def prepare_batch(self, guid_img, img_ori, mask_img_ori, batch_size):
        input_img = []
        cond_img = []
        mask_img = []
        image_size = []
        position_indexes = []

        for i in range(batch_size):
            _input_img, _cond_img, _mask_img, _image_size, _position_indexes = \
                self.parse_item(img_ori, mask_img_ori, guid_img)
            input_img.append(_input_img)
            cond_img.append(_cond_img)
            mask_img.append(_mask_img)
            position_indexes.append(_position_indexes)

            image_size += [_image_size] * _input_img.shape[0]

        input_img = torch.cat(input_img, dim=0).to(self.gpu_id)
        cond_img = torch.cat(cond_img, dim=0).to(self.gpu_id)
        mask_img = torch.cat(mask_img, dim=0).to(self.gpu_id)
        position_indexes = torch.cat(position_indexes, dim=0).to(self.gpu_id)

        return input_img, cond_img, mask_img, image_size, position_indexes

    
    def assemble_results(self, img_out, img_hw=None, position_index=None, default_val=1):
        results_img = np.zeros((img_hw[0], img_hw[1], 3))
        weight_img = np.zeros((img_hw[0], img_hw[1], 3)) + 1e-5

        for i in range(position_index.shape[0]):
            # crop out boarder
            crop_h, crop_w = img_out[i].shape[:2]
            pathed_img = img_out[i][self.padding_crop:crop_h-self.padding_crop, self.padding_crop:crop_w-self.padding_crop]
            position_index[i] += self.padding_crop
            crop_h, crop_w = pathed_img.shape[:2]
            crop_x, crop_y = max(position_index[i][0], 0), max(position_index[i][1], 0)
            shape_max = results_img[crop_x:crop_x+crop_h, crop_y:crop_y+crop_w].shape[:2]
            start_crop_x, start_crop_y = abs(min(position_index[i][0], 0)), abs(min(position_index[i][1], 0))
            # print(pathed_img[start_crop_x:shape_max[0], start_crop_y:shape_max[1]].shape, crop_x, crop_y, position_index[i])
            results_img[crop_x:crop_x+shape_max[0]-start_crop_x, crop_y:crop_y+shape_max[1]-start_crop_y] += pathed_img[start_crop_x:shape_max[0], start_crop_y:shape_max[1]]
            weight_img[crop_x:crop_x+crop_h-start_crop_x, crop_y:crop_y+shape_max[1]-start_crop_y] += 1
        img_out = results_img / weight_img
        img_out[weight_img[:,:,0] < 1] = 255
        # print(img_out.shape, weight_img.shape, np.unique(weight_img), pathed_img.dtype)
        img_out_ = (np.zeros((self.ori_hw[0], self.ori_hw[1], 3)) + default_val) * 255
        img_out_[self.min_uv[0]:self.max_uv[0], self.min_uv[1]:self.max_uv[1]] = img_out
        img_out = img_out_
        return img_out

    def write_batch_img(self, imgs, image_sizes, position_indexes):
        cropped_batch = self.split_hw_overlapped[0] * self.split_hw_overlapped[1]
        if self.results_list is None or self.results_list.shape[0] == 0:
            self.results_list = imgs
            self.position_indexes = position_indexes
        else:
            self.results_list = torch.cat([self.results_list, imgs], dim=0)
            self.position_indexes = torch.cat([self.position_indexes, position_indexes], dim=0)
        self.image_sizes_list += image_sizes

        valid_len = self.results_list.shape[0] - (self.results_list.shape[0] % cropped_batch)
        out_images = []
        for ind in range(0, valid_len, cropped_batch):
            # assemble results
            img_out = (self.results_list[ind:ind+cropped_batch].detach().cpu().numpy() * 255).astype(np.uint8)
            img_out = self.assemble_results(img_out, self.image_sizes_list[ind], self.position_indexes[ind:ind+cropped_batch].detach().cpu().numpy().astype(int))
            # Image.fromarray(img_out.astype(np.uint8)).save(self.results_output_list[ind])
            out_images.append(img_out.astype(np.uint8))
        self.results_list = self.results_list[valid_len:]

        self.position_indexes = self.position_indexes[valid_len:]
        self.image_sizes_list = self.image_sizes_list[valid_len:]

        return out_images

    def write_batch_input(self, imgs, image_sizes, position_indexes, default_val=1):
        cropped_batch = self.split_hw_overlapped[0] * self.split_hw_overlapped[1]

        images = []
        valid_len = imgs.shape[0]
        for ind in range(0, valid_len, cropped_batch):
            # assemble results
            img_out = (imgs[ind:ind+cropped_batch].detach().cpu().numpy() * 255).astype(np.uint8)
            img_out = self.assemble_results(img_out, image_sizes[ind], position_indexes.detach().cpu().numpy().astype(int), default_val).astype(np.uint8)
            images.append(img_out)
        return images
            
    def generation(self, split_hw, split_overlap, guid_img, img_ori, mask_img_ori, dps_scale, uc_score, ddim_steps, batch_size=32, n_samples=1):
        max_batch = __MAX_BATCH__
        operator = GaussialBlurOperator(61, 3.0, self.gpu_id)
        assert batch_size == 1
        self.split_resolution = None
        self.split_overlap = split_overlap
        self.split_hw = split_hw


        # get img hw
        for src_img_id in range(0, 1, batch_size):
            input_img, cond_img, mask_img, image_sizes, position_indexes = self.prepare_batch(guid_img, img_ori, mask_img_ori, 1)

            input_masked = self.write_batch_input(cond_img, image_sizes, position_indexes)
            input_maskes = self.write_batch_input(mask_img, image_sizes, position_indexes, 0)
            
            results_all = []
            for _ in range(n_samples):
                for batch_id in range(0, input_img.shape[0], max_batch):
                    embeddings = {}
                    embeddings["cond_img"] = cond_img[batch_id:batch_id+max_batch]

                    if (mask_img[batch_id:batch_id+max_batch] > 0.5).sum() == 0:
                        results = torch.ones_like(cond_img[batch_id:batch_id+max_batch])
                    else:
                        results = self.model(embeddings, input_img[batch_id:batch_id+max_batch], mask_img[batch_id:batch_id+max_batch], ddim_steps=ddim_steps,
                                            guidance_scale=uc_score, dps_scale=dps_scale, as_latent=False, grad_scale=1, operator=operator)

                    out_images = self.write_batch_img(results, image_sizes[batch_id:batch_id+max_batch], position_indexes[batch_id:batch_id+max_batch])
                results_all += out_images
        ret = {
            "input_image": input_masked,
            "input_maskes": input_maskes,
            "out_images": results_all
        }
        return ret