Spaces:
Runtime error
Runtime error
File size: 7,167 Bytes
402c662 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.norm import RMSNorm
from models.rope import precompute_freqs_cis, apply_rotary_emb
import bitsandbytes as bnb
import math
class NormalLinear(nn.Linear):
def reset_parameters(self) -> None:
pass
class BnbInt8Linear(bnb.nn.Linear8bitLt):
def __init__(self, *args, **kwargs):
super().__init__(has_fp16_weights=False, threshold=6.0, *args, **kwargs)
def reset_parameters(self) -> None:
pass
def get_linear_layer(use_int8):
if use_int8:
return BnbInt8Linear
return NormalLinear
class WordEmbedding(nn.Module):
def __init__(self, args):
super(WordEmbedding, self).__init__()
self.embedding = nn.Embedding(args.vocab_size, args.emb_size)
def forward(self, src):
emb = self.embedding(src)
return emb
class MultiHeadedAttention(nn.Module):
def __init__(self, args, hidden_size, heads_num, attention_head_size, has_bias=True, use_int8=True):
super(MultiHeadedAttention, self).__init__()
self.heads_num = heads_num
self.per_head_size = attention_head_size
self.inner_hidden_size = heads_num * attention_head_size
Linear = get_linear_layer(use_int8)
self.linear_layers = nn.ModuleList(
[Linear(hidden_size, self.inner_hidden_size, bias=has_bias) for _ in range(3)]
)
self.final_linear = Linear(self.inner_hidden_size, hidden_size, bias=has_bias)
# add cache to reduce compute source.
self.cache_k = torch.zeros(
(args.batch_size, args.seq_length, self.heads_num, self.per_head_size)
)
self.cache_v = torch.zeros(
(args.batch_size, args.seq_length, self.heads_num, self.per_head_size)
)
def forward(self, key, value, query, start_pos, continue_exsample, mask, freqs_cis):
batch_size, seq_length, _ = query.size()
heads_num = self.heads_num
per_head_size = self.per_head_size
query, key, value = [l(x).view(batch_size, -1, heads_num, per_head_size) \
for l, x in zip(self.linear_layers, (query, key, value))]
query, key = apply_rotary_emb(query, key, freqs_cis=freqs_cis)
if self.cache_k.device != key.device:
self.cache_k = self.cache_k.to(key)
if self.cache_v.device != value.device:
self.cache_v = self.cache_v.to(value)
self.cache_k[continue_exsample, start_pos: start_pos + seq_length] = key
self.cache_v[continue_exsample, start_pos: start_pos + seq_length] = value
key = self.cache_k[continue_exsample, : start_pos + seq_length]
value = self.cache_v[continue_exsample, : start_pos + seq_length]
query, key, value = [x.transpose(1, 2) for x in (query, key, value)]
scores = torch.matmul(query, key.transpose(-2, -1))
scores = scores / math.sqrt(float(per_head_size))
if mask is not None:
scores += mask
# probs = nn.Softmax(dim=-1)(scores)
probs = F.softmax(scores.float(), dim=-1).type_as(query)
output = torch.matmul(probs, value).transpose(1, 2).\
contiguous().view(batch_size, seq_length, -1)
return self.final_linear(output)
class GatedFeedForward(nn.Module):
def __init__(self, hidden_size, feedforward_size, has_bias=True, use_int8=True):
super(GatedFeedForward, self).__init__()
Linear = get_linear_layer(use_int8)
self.linear_gate = Linear(hidden_size, feedforward_size, bias=has_bias)
self.linear_1 = Linear(hidden_size, feedforward_size, bias=has_bias)
self.linear_2 = Linear(feedforward_size, hidden_size, bias=has_bias)
self.act = F.silu
def forward(self, x):
# gate = self.act(self.linear_gate(x))
gate = self.act(self.linear_gate(x)).type_as(x)
inter_linear = self.linear_1(x)
inter = gate * inter_linear
output = self.linear_2(inter)
return output
class TransformerLayer(nn.Module):
def __init__(self, args):
super(TransformerLayer, self).__init__()
if hasattr(args, "attention_head_size"):
attention_head_size = args.attention_head_size
else:
attention_head_size = args.hidden_size // args.heads_num
has_bias = bool(1 - args.remove_transformer_bias)
# Multi-head Attention
self.self_attn = MultiHeadedAttention(
args, args.hidden_size, args.heads_num, attention_head_size, has_bias=has_bias,
use_int8=args.use_int8
)
# FFN
self.feed_forward = GatedFeedForward(
args.hidden_size, args.feedforward_size, has_bias, use_int8=args.use_int8
)
self.layer_norm_1 = RMSNorm(args.hidden_size)
self.layer_norm_2 = RMSNorm(args.hidden_size)
def forward(self, hidden, start_pos, continue_exsample, mask, freqs_cis=None):
inter = self.layer_norm_1(hidden)
inter = self.self_attn(inter, inter, inter, start_pos, continue_exsample, mask, freqs_cis)
hidden = hidden + inter
output = self.layer_norm_2(hidden)
output = self.feed_forward(output) + hidden
return output
class TransformerEncoder(nn.Module):
def __init__(self, args):
super(TransformerEncoder, self).__init__()
self.mask = args.mask
self.layers_num = args.layers_num
self.transformer = nn.ModuleList(
[TransformerLayer(args) for _ in range(self.layers_num)]
)
self.layer_norm = RMSNorm(args.hidden_size)
self.freqs_cis = precompute_freqs_cis(args.hidden_size // args.heads_num, args.max_seq_length * 2)
def forward(self, emb, start_pos, continue_exsample):
batch_size, seq_length, _ = emb.size()
mask = None
if seq_length > 1:
mask = torch.ones(seq_length, seq_length, device=emb.device)
mask = torch.tril(mask)
mask = (1.0 - mask) * -10000
mask = mask.repeat(batch_size, 1, 1, 1)
hidden = emb
freqs_cis = self.freqs_cis[start_pos: start_pos + seq_length].to(hidden.device)
for i in range(self.layers_num):
hidden = self.transformer[i](hidden, start_pos, continue_exsample, mask, freqs_cis=freqs_cis)
return self.layer_norm(hidden)
class LmOutput(nn.Module):
def __init__(self, args):
super(LmOutput, self).__init__()
# update: lm output not use int8
Linear = get_linear_layer(False)
self.lm = Linear(args.hidden_size, args.vocab_size, bias=False)
def forward(self, x):
return self.lm(x[:, -1, :])
class LLaMa(nn.Module):
def __init__(self, args):
super(LLaMa, self).__init__()
self.embedding = WordEmbedding(args)
self.encoder = TransformerEncoder(args)
self.target = LmOutput(args)
#@torch.inference_mode()
def forward(self, src, start_pos, continue_exsample):
emb = self.embedding(src)
output = self.encoder(emb, start_pos, continue_exsample)
output = self.target(output)
return output
|