from functools import partial import torch import numpy as np def get_dims_with_exclusion(dim, exclude=None): dims = list(range(dim)) if exclude is not None: dims.remove(exclude) return dims def get_unique_labels(mask): return np.nonzero(np.bincount(mask.flatten() + 1))[0] - 1 def get_bbox_from_mask(mask): rows = np.any(mask, axis=1) cols = np.any(mask, axis=0) rmin, rmax = np.where(rows)[0][[0, -1]] cmin, cmax = np.where(cols)[0][[0, -1]] return rmin, rmax, cmin, cmax def expand_bbox(bbox, expand_ratio, min_crop_size=None): rmin, rmax, cmin, cmax = bbox rcenter = 0.5 * (rmin + rmax) ccenter = 0.5 * (cmin + cmax) height = expand_ratio * (rmax - rmin + 1) width = expand_ratio * (cmax - cmin + 1) if min_crop_size is not None: height = max(height, min_crop_size) width = max(width, min_crop_size) rmin = int(round(rcenter - 0.5 * height)) rmax = int(round(rcenter + 0.5 * height)) cmin = int(round(ccenter - 0.5 * width)) cmax = int(round(ccenter + 0.5 * width)) return rmin, rmax, cmin, cmax def clamp_bbox(bbox, rmin, rmax, cmin, cmax): return (max(rmin, bbox[0]), min(rmax, bbox[1]), max(cmin, bbox[2]), min(cmax, bbox[3])) def get_bbox_iou(b1, b2): h_iou = get_segments_iou(b1[:2], b2[:2]) w_iou = get_segments_iou(b1[2:4], b2[2:4]) return h_iou * w_iou def get_segments_iou(s1, s2): a, b = s1 c, d = s2 intersection = max(0, min(b, d) - max(a, c) + 1) union = max(1e-6, max(b, d) - min(a, c) + 1) return intersection / union