""" Dumps things to tensorboard and console """ import os import warnings import git import torchvision.transforms as transforms from torch.utils.tensorboard import SummaryWriter def tensor_to_numpy(image): image_np = (image.numpy() * 255).astype('uint8') return image_np def detach_to_cpu(x): return x.detach().cpu() def fix_width_trunc(x): return ('{:.9s}'.format('{:0.9f}'.format(x))) class TensorboardLogger: def __init__(self, short_id, id): self.short_id = short_id if self.short_id == 'NULL': self.short_id = 'DEBUG' if id is None: self.no_log = True warnings.warn('Logging has been disbaled.') else: self.no_log = False self.inv_im_trans = transforms.Normalize( mean=[-0.485/0.229, -0.456/0.224, -0.406/0.225], std=[1/0.229, 1/0.224, 1/0.225]) self.inv_seg_trans = transforms.Normalize( mean=[-0.5/0.5], std=[1/0.5]) log_path = os.path.join('.', 'log', '%s' % id) self.logger = SummaryWriter(log_path) repo = git.Repo(".") self.log_string('git', str(repo.active_branch) + ' ' + str(repo.head.commit.hexsha)) def log_scalar(self, tag, x, step): if self.no_log: warnings.warn('Logging has been disabled.') return self.logger.add_scalar(tag, x, step) def log_metrics(self, l1_tag, l2_tag, val, step, f=None): tag = l1_tag + '/' + l2_tag text = '{:s} - It {:6d} [{:5s}] [{:13}]: {:s}'.format(self.short_id, step, l1_tag.upper(), l2_tag, fix_width_trunc(val)) print(text) if f is not None: f.write(text + '\n') f.flush() self.log_scalar(tag, val, step) def log_im(self, tag, x, step): if self.no_log: warnings.warn('Logging has been disabled.') return x = detach_to_cpu(x) x = self.inv_im_trans(x) x = tensor_to_numpy(x) self.logger.add_image(tag, x, step) def log_cv2(self, tag, x, step): if self.no_log: warnings.warn('Logging has been disabled.') return x = x.transpose((2, 0, 1)) self.logger.add_image(tag, x, step) def log_seg(self, tag, x, step): if self.no_log: warnings.warn('Logging has been disabled.') return x = detach_to_cpu(x) x = self.inv_seg_trans(x) x = tensor_to_numpy(x) self.logger.add_image(tag, x, step) def log_gray(self, tag, x, step): if self.no_log: warnings.warn('Logging has been disabled.') return x = detach_to_cpu(x) x = tensor_to_numpy(x) self.logger.add_image(tag, x, step) def log_string(self, tag, x): print(tag, x) if self.no_log: warnings.warn('Logging has been disabled.') return self.logger.add_text(tag, x)