Spaces:
Running
Running
from time import time | |
import numpy as np | |
import torch | |
from fbrs.inference import utils | |
from fbrs.inference.clicker import Clicker | |
try: | |
get_ipython() | |
from tqdm import tqdm_notebook as tqdm | |
except NameError: | |
from tqdm import tqdm | |
def evaluate_dataset(dataset, predictor, oracle_eval=False, **kwargs): | |
all_ious = [] | |
start_time = time() | |
for index in tqdm(range(len(dataset)), leave=False): | |
sample = dataset.get_sample(index) | |
item = dataset[index] | |
if oracle_eval: | |
gt_mask = torch.tensor(sample['instances_mask'], dtype=torch.float32) | |
gt_mask = gt_mask.unsqueeze(0).unsqueeze(0) | |
predictor.opt_functor.mask_loss.set_gt_mask(gt_mask) | |
_, sample_ious, _ = evaluate_sample(item['images'], sample['instances_mask'], predictor, **kwargs) | |
all_ious.append(sample_ious) | |
end_time = time() | |
elapsed_time = end_time - start_time | |
return all_ious, elapsed_time | |
def evaluate_sample(image_nd, instances_mask, predictor, max_iou_thr, | |
pred_thr=0.49, max_clicks=20): | |
clicker = Clicker(gt_mask=instances_mask) | |
pred_mask = np.zeros_like(instances_mask) | |
ious_list = [] | |
with torch.no_grad(): | |
predictor.set_input_image(image_nd) | |
for click_number in range(max_clicks): | |
clicker.make_next_click(pred_mask) | |
pred_probs = predictor.get_prediction(clicker) | |
pred_mask = pred_probs > pred_thr | |
iou = utils.get_iou(instances_mask, pred_mask) | |
ious_list.append(iou) | |
if iou >= max_iou_thr: | |
break | |
return clicker.clicks_list, np.array(ious_list, dtype=np.float32), pred_probs | |