Spaces:
Running
on
A100
Running
on
A100
# Adapted from: https://github.com/huggingface/diffusers/blob/v0.26.3/src/diffusers/models/transformers/transformer_2d.py | |
import math | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional | |
import torch | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.embeddings import PixArtAlphaTextProjection | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import AdaLayerNormSingle | |
from diffusers.utils import BaseOutput, is_torch_version | |
from torch import nn | |
from txt2img.common import dist_util, logger | |
from txt2img.config.weights_init_config import WeightsInitConfig, WeightsInitModeName | |
from txt2img.diffusion.models.pixart.attention import BasicTransformerBlock | |
from txt2img.diffusion.models.pixart.embeddings import get_3d_sincos_pos_embed | |
class Transformer3DModelOutput(BaseOutput): | |
""" | |
The output of [`Transformer2DModel`]. | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): | |
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability | |
distributions for the unnoised latent pixels. | |
""" | |
sample: torch.FloatTensor | |
class Transformer3DModel(ModelMixin, ConfigMixin): | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
out_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
num_vector_embeds: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
adaptive_norm: str = "single_scale_shift", # 'single_scale_shift' or 'single_scale' | |
standardization_norm: str = "layer_norm", # 'layer_norm' or 'rms_norm' | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-5, | |
attention_type: str = "default", | |
caption_channels: int = None, | |
project_to_2d_pos: bool = False, | |
use_tpu_flash_attention: bool = False, # if True uses the TPU attention offload ('flash attention') | |
qk_norm: Optional[str] = None, | |
positional_embedding_type: str = "absolute", | |
positional_embedding_theta: Optional[float] = None, | |
positional_embedding_max_pos: Optional[List[int]] = None, | |
timestep_scale_multiplier: Optional[float] = None, | |
): | |
super().__init__() | |
self.use_tpu_flash_attention = use_tpu_flash_attention # FIXME: push config down to the attention modules | |
self.use_linear_projection = use_linear_projection | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
inner_dim = num_attention_heads * attention_head_dim | |
self.inner_dim = inner_dim | |
self.project_to_2d_pos = project_to_2d_pos | |
self.patchify_proj = nn.Linear(in_channels, inner_dim, bias=True) | |
self.positional_embedding_type = positional_embedding_type | |
self.positional_embedding_theta = positional_embedding_theta | |
self.positional_embedding_max_pos = positional_embedding_max_pos | |
self.use_rope = self.positional_embedding_type == "rope" | |
self.timestep_scale_multiplier = timestep_scale_multiplier | |
if self.positional_embedding_type == "absolute": | |
embed_dim_3d = math.ceil((inner_dim / 2) * 3) if project_to_2d_pos else inner_dim | |
if self.project_to_2d_pos: | |
self.to_2d_proj = torch.nn.Linear(embed_dim_3d, inner_dim, bias=False) | |
self._init_to_2d_proj_weights(self.to_2d_proj) | |
elif self.positional_embedding_type == "rope": | |
if positional_embedding_theta is None: | |
raise ValueError( | |
"If `positional_embedding_type` type is rope, `positional_embedding_theta` must also be defined" | |
) | |
if positional_embedding_max_pos is None: | |
raise ValueError( | |
"If `positional_embedding_type` type is rope, `positional_embedding_max_pos` must also be defined" | |
) | |
# 3. Define transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
double_self_attention=double_self_attention, | |
upcast_attention=upcast_attention, | |
adaptive_norm=adaptive_norm, | |
standardization_norm=standardization_norm, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
attention_type=attention_type, | |
use_tpu_flash_attention=use_tpu_flash_attention, | |
qk_norm=qk_norm, | |
use_rope=self.use_rope, | |
) | |
for d in range(num_layers) | |
] | |
) | |
# 4. Define output layers | |
self.out_channels = in_channels if out_channels is None else out_channels | |
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) | |
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) | |
self.proj_out = nn.Linear(inner_dim, self.out_channels) | |
# 5. PixArt-Alpha blocks. | |
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=False) | |
if adaptive_norm == "single_scale": | |
# Use 4 channels instead of the 6 for the PixArt-Alpha scale + shift ada norm. | |
self.adaln_single.linear = nn.Linear(inner_dim, 4 * inner_dim, bias=True) | |
self.caption_projection = None | |
if caption_channels is not None: | |
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) | |
self.gradient_checkpointing = False | |
def set_use_tpu_flash_attention(self): | |
r""" | |
Function sets the flag in this object and propagates down the children. The flag will enforce the usage of TPU | |
attention kernel. | |
""" | |
logger.info(" ENABLE TPU FLASH ATTENTION -> TRUE") | |
# if using TPU -> configure components to use TPU flash attention | |
if dist_util.acceleration_type() == dist_util.AccelerationType.TPU: | |
self.use_tpu_flash_attention = True | |
# push config down to the attention modules | |
for block in self.transformer_blocks: | |
block.set_use_tpu_flash_attention() | |
def initialize(self, weights_init: WeightsInitConfig): | |
if weights_init.mode != WeightsInitModeName.PixArt and weights_init.mode != WeightsInitModeName.Xora: | |
return | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
# Initialize timestep embedding MLP: | |
nn.init.normal_(self.adaln_single.emb.timestep_embedder.linear_1.weight, std=weights_init.embedding_std) | |
nn.init.normal_(self.adaln_single.emb.timestep_embedder.linear_2.weight, std=weights_init.embedding_std) | |
nn.init.normal_(self.adaln_single.linear.weight, std=weights_init.embedding_std) | |
if hasattr(self.adaln_single.emb, "resolution_embedder"): | |
nn.init.normal_(self.adaln_single.emb.resolution_embedder.linear_1.weight, std=weights_init.embedding_std) | |
nn.init.normal_(self.adaln_single.emb.resolution_embedder.linear_2.weight, std=weights_init.embedding_std) | |
if hasattr(self.adaln_single.emb, "aspect_ratio_embedder"): | |
nn.init.normal_(self.adaln_single.emb.aspect_ratio_embedder.linear_1.weight, std=weights_init.embedding_std) | |
nn.init.normal_(self.adaln_single.emb.aspect_ratio_embedder.linear_2.weight, std=weights_init.embedding_std) | |
# Initialize caption embedding MLP: | |
nn.init.normal_(self.caption_projection.linear_1.weight, std=weights_init.embedding_std) | |
nn.init.normal_(self.caption_projection.linear_1.weight, std=weights_init.embedding_std) | |
# Zero-out adaLN modulation layers in PixArt blocks: | |
for block in self.transformer_blocks: | |
if weights_init.mode == WeightsInitModeName.Xora: | |
nn.init.constant_(block.attn1.to_out[0].weight, 0) | |
nn.init.constant_(block.attn1.to_out[0].bias, 0) | |
nn.init.constant_(block.attn2.to_out[0].weight, 0) | |
nn.init.constant_(block.attn2.to_out[0].bias, 0) | |
if weights_init.mode == WeightsInitModeName.Xora: | |
nn.init.constant_(block.ff.net[2].weight, 0) | |
nn.init.constant_(block.ff.net[2].bias, 0) | |
# Zero-out output layers: | |
nn.init.constant_(self.proj_out.weight, 0) | |
nn.init.constant_(self.proj_out.bias, 0) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
def _init_to_2d_proj_weights(linear_layer): | |
input_features = linear_layer.weight.data.size(1) | |
output_features = linear_layer.weight.data.size(0) | |
# Start with a zero matrix | |
identity_like = torch.zeros((output_features, input_features)) | |
# Fill the diagonal with 1's as much as possible | |
min_features = min(output_features, input_features) | |
identity_like[:min_features, :min_features] = torch.eye(min_features) | |
linear_layer.weight.data = identity_like.to(linear_layer.weight.data.device) | |
def get_fractional_positions(self, indices_grid): | |
fractional_positions = torch.stack( | |
[indices_grid[:, i] / self.positional_embedding_max_pos[i] for i in range(3)], dim=-1 | |
) | |
return fractional_positions | |
def precompute_freqs_cis(self, indices_grid, spacing="exp"): | |
dtype = self.dtype | |
dim = self.inner_dim | |
theta = self.positional_embedding_theta | |
fractional_positions = self.get_fractional_positions(indices_grid) | |
start = 1 | |
end = theta | |
device = fractional_positions.device | |
if spacing == "exp": | |
indices = theta ** ( | |
torch.linspace(math.log(start, theta), math.log(end, theta), dim // 6, device=device, dtype=dtype) | |
) | |
indices = indices.to(dtype=dtype) | |
elif spacing == "exp_2": | |
indices = 1.0 / theta ** (torch.arange(0, dim, 6, device=device) / dim) | |
indices = indices.to(dtype=dtype) | |
elif spacing == "linear": | |
indices = torch.linspace(start, end, dim // 6, device=device, dtype=dtype) | |
elif spacing == "sqrt": | |
indices = torch.linspace(start**2, end**2, dim // 6, device=device, dtype=dtype).sqrt() | |
indices = indices * math.pi / 2 | |
if spacing == "exp_2": | |
freqs = (indices * fractional_positions.unsqueeze(-1)).transpose(-1, -2).flatten(2) | |
else: | |
freqs = (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)).transpose(-1, -2).flatten(2) | |
cos_freq = freqs.cos().repeat_interleave(2, dim=-1) | |
sin_freq = freqs.sin().repeat_interleave(2, dim=-1) | |
if dim % 6 != 0: | |
cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6]) | |
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6]) | |
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1) | |
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1) | |
return cos_freq, sin_freq | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
indices_grid: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
): | |
""" | |
The [`Transformer2DModel`] forward method. | |
Args: | |
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): | |
Input `hidden_states`. | |
indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`): | |
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
self-attention. | |
timestep ( `torch.LongTensor`, *optional*): | |
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. | |
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): | |
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in | |
`AdaLayerZeroNorm`. | |
cross_attention_kwargs ( `Dict[str, Any]`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
attention_mask ( `torch.Tensor`, *optional*): | |
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask | |
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large | |
negative values to the attention scores corresponding to "discard" tokens. | |
encoder_attention_mask ( `torch.Tensor`, *optional*): | |
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: | |
* Mask `(batch, sequence_length)` True = keep, False = discard. | |
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. | |
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format | |
above. This bias will be added to the cross-attention scores. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
tuple. | |
Returns: | |
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
`tuple` where the first element is the sample tensor. | |
""" | |
# for tpu attention offload 2d token masks are used. No need to transform. | |
if not self.use_tpu_flash_attention: | |
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension. | |
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. | |
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. | |
# expects mask of shape: | |
# [batch, key_tokens] | |
# adds singleton query_tokens dimension: | |
# [batch, 1, key_tokens] | |
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
if attention_mask is not None and attention_mask.ndim == 2: | |
# assume that mask is expressed as: | |
# (1 = keep, 0 = discard) | |
# convert mask into a bias that can be added to attention scores: | |
# (keep = +0, discard = -10000.0) | |
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: | |
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
# 1. Input | |
hidden_states = self.patchify_proj(hidden_states) | |
if self.timestep_scale_multiplier: | |
timestep = self.timestep_scale_multiplier * timestep | |
if self.positional_embedding_type == "absolute": | |
pos_embed_3d = self.get_absolute_pos_embed(indices_grid).to(hidden_states.device) | |
if self.project_to_2d_pos: | |
pos_embed = self.to_2d_proj(pos_embed_3d) | |
hidden_states = (hidden_states + pos_embed).to(hidden_states.dtype) | |
freqs_cis = None | |
elif self.positional_embedding_type == "rope": | |
freqs_cis = self.precompute_freqs_cis(indices_grid) | |
batch_size = hidden_states.shape[0] | |
timestep, embedded_timestep = self.adaln_single( | |
timestep.flatten(), | |
{"resolution": None, "aspect_ratio": None}, | |
batch_size=batch_size, | |
hidden_dtype=hidden_states.dtype, | |
) | |
# Second dimension is 1 or number of tokens (if timestep_per_token) | |
timestep = timestep.view(batch_size, -1, timestep.shape[-1]) | |
embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.shape[-1]) | |
# 2. Blocks | |
if self.caption_projection is not None: | |
batch_size = hidden_states.shape[0] | |
encoder_hidden_states = self.caption_projection(encoder_hidden_states) | |
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) | |
for block in self.transformer_blocks: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
freqs_cis, | |
attention_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
timestep, | |
cross_attention_kwargs, | |
class_labels, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = block( | |
hidden_states, | |
freqs_cis=freqs_cis, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
timestep=timestep, | |
cross_attention_kwargs=cross_attention_kwargs, | |
class_labels=class_labels, | |
) | |
# 3. Output | |
scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None] | |
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1] | |
hidden_states = self.norm_out(hidden_states) | |
# Modulation | |
hidden_states = hidden_states * (1 + scale) + shift | |
hidden_states = self.proj_out(hidden_states) | |
if not return_dict: | |
return (hidden_states,) | |
return Transformer3DModelOutput(sample=hidden_states) | |
def get_absolute_pos_embed(self, grid): | |
grid_np = grid[0].cpu().numpy() | |
embed_dim_3d = math.ceil((self.inner_dim / 2) * 3) if self.project_to_2d_pos else self.inner_dim | |
pos_embed = get_3d_sincos_pos_embed( # (f h w) | |
embed_dim_3d, | |
grid_np, | |
h=int(max(grid_np[1]) + 1), | |
w=int(max(grid_np[2]) + 1), | |
f=int(max(grid_np[0] + 1)), | |
) | |
return torch.from_numpy(pos_embed).float().unsqueeze(0) | |