ResumeParser / resume_helpers.py
LeoWalker's picture
updated with gemini and new anthropic models too
d708c06
from dotenv import load_dotenv
import io
import streamlit as st
import streamlit.components.v1 as components
import base64
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import PydanticOutputParser
from langchain_anthropic import ChatAnthropic
from langchain_openai import ChatOpenAI
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.exceptions import OutputParserException
from pydantic import ValidationError
from langchain_core.pydantic_v1 import BaseModel, Field
from resume_template import Resume
from json import JSONDecodeError
import PyPDF2
import json
import time
import os
# Set the LANGCHAIN_TRACING_V2 environment variable to 'true'
os.environ['LANGCHAIN_TRACING_V2'] = 'true'
# Set the LANGCHAIN_PROJECT environment variable to the desired project name
os.environ['LANGCHAIN_PROJECT'] = 'Resume_Project'
load_dotenv()
llm_dict = {
"GPT 3.5 turbo": ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo-0125"),
"GPT 4o": ChatOpenAI(temperature=0, model_name="gpt-4o"),
"Anthropic 3.5 Sonnet": ChatAnthropic(model="claude-3-5-sonnet-20240620"),
"Llama 3 8b": ChatGroq(model_name="llama3-8b-8192"),
"Llama 3 70b": ChatGroq(model_name="llama3-70b-8192"),
"Gemma 7b": ChatGroq(model_name="gemma-7b-it"),
"Mixtral 8x7b": ChatGroq(model_name="mixtral-8x7b-32768"),
"Gemini 1.5 Pro": ChatGoogleGenerativeAI(model="gemini-1.5-pro"),
"Gemini 1.5 Flash": ChatGoogleGenerativeAI(model="gemini-1.5-flash"),
}
def pdf_to_string(file):
"""
Convert a PDF file to a string.
Parameters:
file (io.BytesIO): A file-like object representing the PDF file.
Returns:
str: The extracted text from the PDF.
"""
pdf_reader = PyPDF2.PdfReader(file)
num_pages = len(pdf_reader.pages)
text = ''
for i in range(num_pages):
page = pdf_reader.pages[i]
text += page.extract_text()
file.close()
return text
class CustomOutputParserException(Exception):
pass
def extract_resume_fields(full_text, model):
"""
Analyze a resume text and extract structured information using a specified language model.
Parameters:
full_text (str): The text content of the resume.
model (str): The language model object to use for processing the text.
Returns:
dict: A dictionary containing structured information extracted from the resume.
"""
# The Resume object is imported from the local resume_template file
with open("prompts/resume_extraction.prompt", "r") as f:
template = f.read()
parser = PydanticOutputParser(pydantic_object=Resume)
prompt_template = PromptTemplate(
template=template,
input_variables=["resume"],
partial_variables={"response_template": parser.get_format_instructions()},
)
llm = llm_dict.get(model, ChatOpenAI(temperature=0, model=model))
chain = prompt_template | llm | parser
max_attempts = 3
attempt = 1
while attempt <= max_attempts:
try:
output = chain.invoke(full_text)
print(output)
return output
except (CustomOutputParserException, ValidationError) as e:
if attempt == max_attempts:
raise e
else:
print(f"Parsing error occurred. Retrying (attempt {attempt + 1}/{max_attempts})...")
attempt += 1
return None
def display_extracted_fields(obj, section_title=None, indent=0):
if section_title:
st.subheader(section_title)
for field_name, field_value in obj:
if field_name in ["personal_details", "education", "work_experience", "projects", "skills", "certifications", "publications", "awards", "additional_sections"]:
st.write(" " * indent + f"**{field_name.replace('_', ' ').title()}**:")
if isinstance(field_value, BaseModel):
display_extracted_fields(field_value, None, indent + 1)
elif isinstance(field_value, list):
for item in field_value:
if isinstance(item, BaseModel):
display_extracted_fields(item, None, indent + 1)
else:
st.write(" " * (indent + 1) + "- " + str(item))
else:
st.write(" " * (indent + 1) + str(field_value))
else:
st.write(" " * indent + f"{field_name.replace('_', ' ').title()}: " + str(field_value))
def get_json_download_link(json_str, download_name):
# Convert the JSON string back to a dictionary
data = json.loads(json_str)
# Convert the dictionary back to a JSON string with 4 spaces indentation
json_str_formatted = json.dumps(data, indent=4)
b64 = base64.b64encode(json_str_formatted.encode()).decode()
href = f'<a href="data:file/json;base64,{b64}" download="{download_name}.json">Click here to download the JSON file</a>'
return href