Leeps commited on
Commit
0261dbe
1 Parent(s): 19269ca

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. api/index.py +11 -21
api/index.py CHANGED
@@ -112,8 +112,7 @@ def image_classifier(moodboard, starter_image, image_strength, prompt):
112
  "apply_watermark": False,
113
  "num_inference_steps": 25,
114
  "prompt_strength": 1-image_strength,
115
- "num_outputs": 3,
116
- "disable_safety_checker": True
117
  }
118
 
119
  output = replicate.run(
@@ -121,26 +120,17 @@ def image_classifier(moodboard, starter_image, image_strength, prompt):
121
  input=input
122
  )
123
 
124
- # Download the image from the URL
125
- image_url = output[0]
126
- print(image_url)
127
- response = requests.get(image_url)
128
- print(response)
129
- img1 = Image.open(io.BytesIO(response.content))
130
-
131
- image_url = output[1]
132
- print(image_url)
133
- response = requests.get(image_url)
134
- print(response)
135
- img2 = Image.open(io.BytesIO(response.content))
136
-
137
- image_url = output[2]
138
- print(image_url)
139
- response = requests.get(image_url)
140
- print(response)
141
- img3 = Image.open(io.BytesIO(response.content))
142
 
143
- return [img1, img2, img3] # Return the image object
 
 
 
 
144
 
145
  demo = gr.Interface(fn=image_classifier, inputs=["image", "image", gr.Slider(0, 1, step=0.025, value=0.2, label="Image Strength"), "text"], outputs=["image", "image", "image"])
146
  demo.launch(share=False)
 
112
  "apply_watermark": False,
113
  "num_inference_steps": 25,
114
  "prompt_strength": 1-image_strength,
115
+ "num_outputs": 3
 
116
  }
117
 
118
  output = replicate.run(
 
120
  input=input
121
  )
122
 
123
+ images = []
124
+ for i in range(min(len(output), 3)):
125
+ image_url = output[i]
126
+ response = requests.get(image_url)
127
+ images.append(Image.open(io.BytesIO(response.content)))
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
+ # Add empty images if fewer than 3 were returned
130
+ while len(images) < 3:
131
+ images.append(Image.new('RGB', (768, 768), 'gray'))
132
+
133
+ return images
134
 
135
  demo = gr.Interface(fn=image_classifier, inputs=["image", "image", gr.Slider(0, 1, step=0.025, value=0.2, label="Image Strength"), "text"], outputs=["image", "image", "image"])
136
  demo.launch(share=False)