Lee-Shang fcakyon commited on
Commit
8cff839
·
0 Parent(s):

Duplicate from fcakyon/sahi-yolox

Browse files

Co-authored-by: Fatih <[email protected]>

Files changed (7) hide show
  1. .gitignore +129 -0
  2. LICENSE +21 -0
  3. README.md +38 -0
  4. app.py +248 -0
  5. packages.txt +1 -0
  6. requirements.txt +9 -0
  7. utils.py +54 -0
.gitignore ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ pip-wheel-metadata/
24
+ share/python-wheels/
25
+ *.egg-info/
26
+ .installed.cfg
27
+ *.egg
28
+ MANIFEST
29
+
30
+ # PyInstaller
31
+ # Usually these files are written by a python script from a template
32
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
33
+ *.manifest
34
+ *.spec
35
+
36
+ # Installer logs
37
+ pip-log.txt
38
+ pip-delete-this-directory.txt
39
+
40
+ # Unit test / coverage reports
41
+ htmlcov/
42
+ .tox/
43
+ .nox/
44
+ .coverage
45
+ .coverage.*
46
+ .cache
47
+ nosetests.xml
48
+ coverage.xml
49
+ *.cover
50
+ *.py,cover
51
+ .hypothesis/
52
+ .pytest_cache/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ target/
76
+
77
+ # Jupyter Notebook
78
+ .ipynb_checkpoints
79
+
80
+ # IPython
81
+ profile_default/
82
+ ipython_config.py
83
+
84
+ # pyenv
85
+ .python-version
86
+
87
+ # pipenv
88
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
90
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
91
+ # install all needed dependencies.
92
+ #Pipfile.lock
93
+
94
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95
+ __pypackages__/
96
+
97
+ # Celery stuff
98
+ celerybeat-schedule
99
+ celerybeat.pid
100
+
101
+ # SageMath parsed files
102
+ *.sage.py
103
+
104
+ # Environments
105
+ .env
106
+ .venv
107
+ env/
108
+ venv/
109
+ ENV/
110
+ env.bak/
111
+ venv.bak/
112
+
113
+ # Spyder project settings
114
+ .spyderproject
115
+ .spyproject
116
+
117
+ # Rope project settings
118
+ .ropeproject
119
+
120
+ # mkdocs documentation
121
+ /site
122
+
123
+ # mypy
124
+ .mypy_cache/
125
+ .dmypy.json
126
+ dmypy.json
127
+
128
+ # Pyre type checker
129
+ .pyre/
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2021 fatih
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Small Object Detection with YOLOX
3
+ emoji: 🚀
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: streamlit
7
+ sdk_version: 1.10.0
8
+ app_file: app.py
9
+ pinned: false
10
+ duplicated_from: fcakyon/sahi-yolox
11
+ ---
12
+
13
+ # Configuration
14
+ `title`: _string_
15
+ Display title for the Space
16
+
17
+ `emoji`: _string_
18
+ Space emoji (emoji-only character allowed)
19
+
20
+ `colorFrom`: _string_
21
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
22
+
23
+ `colorTo`: _string_
24
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
25
+
26
+ `sdk`: _string_
27
+ Can be either `gradio` or `streamlit`
28
+
29
+ `sdk_version` : _string_
30
+ Only applicable for `streamlit` SDK.
31
+ See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
32
+
33
+ `app_file`: _string_
34
+ Path to your main application file (which contains either `gradio` or `streamlit` Python code).
35
+ Path is relative to the root of the repository.
36
+
37
+ `pinned`: _boolean_
38
+ Whether the Space stays on top of your list.
app.py ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import sahi.utils.file
3
+ import sahi.utils.mmdet
4
+ from sahi import AutoDetectionModel
5
+ from PIL import Image
6
+ import random
7
+ from utils import sahi_mmdet_inference
8
+ from streamlit_image_comparison import image_comparison
9
+
10
+ MMDET_YOLOX_TINY_MODEL_URL = "https://huggingface.co/fcakyon/mmdet-yolox-tiny/resolve/main/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth"
11
+ MMDET_YOLOX_TINY_MODEL_PATH = "yolox.pt"
12
+ MMDET_YOLOX_TINY_CONFIG_URL = "https://huggingface.co/fcakyon/mmdet-yolox-tiny/raw/main/yolox_tiny_8x8_300e_coco.py"
13
+ MMDET_YOLOX_TINY_CONFIG_PATH = "config.py"
14
+
15
+ IMAGE_TO_URL = {
16
+ "apple_tree.jpg": "https://user-images.githubusercontent.com/34196005/142730935-2ace3999-a47b-49bb-83e0-2bdd509f1c90.jpg",
17
+ "highway.jpg": "https://user-images.githubusercontent.com/34196005/142730936-1b397756-52e5-43be-a949-42ec0134d5d8.jpg",
18
+ "highway2.jpg": "https://user-images.githubusercontent.com/34196005/142742871-bf485f84-0355-43a3-be86-96b44e63c3a2.jpg",
19
+ "highway3.jpg": "https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg",
20
+ "highway2-yolox.jpg": "https://user-images.githubusercontent.com/34196005/143309873-c0c1f31c-c42e-4a36-834e-da0a2336bb19.jpg",
21
+ "highway2-sahi.jpg": "https://user-images.githubusercontent.com/34196005/143309867-42841f5a-9181-4d22-b570-65f90f2da231.jpg",
22
+ }
23
+
24
+
25
+ @st.cache(allow_output_mutation=True, show_spinner=False)
26
+ def download_comparison_images():
27
+ sahi.utils.file.download_from_url(
28
+ "https://user-images.githubusercontent.com/34196005/143309873-c0c1f31c-c42e-4a36-834e-da0a2336bb19.jpg",
29
+ "highway2-yolox.jpg",
30
+ )
31
+ sahi.utils.file.download_from_url(
32
+ "https://user-images.githubusercontent.com/34196005/143309867-42841f5a-9181-4d22-b570-65f90f2da231.jpg",
33
+ "highway2-sahi.jpg",
34
+ )
35
+
36
+
37
+ @st.cache(allow_output_mutation=True, show_spinner=False)
38
+ def get_model():
39
+ sahi.utils.file.download_from_url(
40
+ MMDET_YOLOX_TINY_MODEL_URL,
41
+ MMDET_YOLOX_TINY_MODEL_PATH,
42
+ )
43
+ sahi.utils.file.download_from_url(
44
+ MMDET_YOLOX_TINY_CONFIG_URL,
45
+ MMDET_YOLOX_TINY_CONFIG_PATH,
46
+ )
47
+
48
+ detection_model = AutoDetectionModel.from_pretrained(
49
+ model_type='mmdet',
50
+ model_path=MMDET_YOLOX_TINY_MODEL_PATH,
51
+ config_path=MMDET_YOLOX_TINY_CONFIG_PATH,
52
+ confidence_threshold=0.5,
53
+ device="cpu",
54
+ )
55
+ return detection_model
56
+
57
+
58
+ class SpinnerTexts:
59
+ def __init__(self):
60
+ self.ind_history_list = []
61
+ self.text_list = [
62
+ "Meanwhile check out [MMDetection Colab notebook of SAHI](https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_mmdetection.ipynb)!",
63
+ "Meanwhile check out [YOLOv5 Colab notebook of SAHI](https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_yolov5.ipynb)!",
64
+ "Meanwhile check out [aerial object detection with SAHI](https://blog.ml6.eu/how-to-detect-small-objects-in-very-large-images-70234bab0f98?gi=b434299595d4)!",
65
+ "Meanwhile check out [COCO Utilities of SAHI](https://github.com/obss/sahi/blob/main/docs/COCO.md)!",
66
+ "Meanwhile check out [FiftyOne utilities of SAHI](https://github.com/obss/sahi#fiftyone-utilities)!",
67
+ "Meanwhile [give a Github star to SAHI](https://github.com/obss/sahi/stargazers)!",
68
+ "Meanwhile see [how easy is to install SAHI](https://github.com/obss/sahi#getting-started)!",
69
+ "Meanwhile check out [Medium blogpost of SAHI](https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80)!",
70
+ "Meanwhile try out [YOLOv5 HF Spaces demo of SAHI](https://huggingface.co/spaces/fcakyon/sahi-yolov5)!",
71
+ ]
72
+
73
+ def _store(self, ind):
74
+ if len(self.ind_history_list) == 6:
75
+ self.ind_history_list.pop(0)
76
+ self.ind_history_list.append(ind)
77
+
78
+ def get(self):
79
+ ind = 0
80
+ while ind in self.ind_history_list:
81
+ ind = random.randint(0, len(self.text_list) - 1)
82
+ self._store(ind)
83
+ return self.text_list[ind]
84
+
85
+
86
+ st.set_page_config(
87
+ page_title="Small Object Detection with SAHI + YOLOX",
88
+ page_icon="🚀",
89
+ layout="centered",
90
+ initial_sidebar_state="auto",
91
+ )
92
+
93
+ download_comparison_images()
94
+
95
+ if "last_spinner_texts" not in st.session_state:
96
+ st.session_state["last_spinner_texts"] = SpinnerTexts()
97
+
98
+ if "output_1" not in st.session_state:
99
+ st.session_state["output_1"] = Image.open("highway2-yolox.jpg")
100
+
101
+ if "output_2" not in st.session_state:
102
+ st.session_state["output_2"] = Image.open("highway2-sahi.jpg")
103
+
104
+ st.markdown(
105
+ """
106
+ <h2 style='text-align: center'>
107
+ Small Object Detection <br />
108
+ with SAHI + YOLOX
109
+ </h2>
110
+ """,
111
+ unsafe_allow_html=True,
112
+ )
113
+ st.markdown(
114
+ """
115
+ <p style='text-align: center'>
116
+ <a href='https://github.com/obss/sahi' target='_blank'>SAHI Github</a> | <a href='https://github.com/open-mmlab/mmdetection/tree/master/configs/yolox' target='_blank'>YOLOX Github</a> | <a href='https://huggingface.co/spaces/fcakyon/sahi-yolov5' target='_blank'>SAHI+YOLOv5 Demo</a>
117
+ <br />
118
+ Follow me for more! <a href='https://twitter.com/fcakyon' target='_blank'> <img src="https://img.icons8.com/color/48/000000/twitter--v1.png" height="30"></a><a href='https://github.com/fcakyon' target='_blank'><img src="https://img.icons8.com/fluency/48/000000/github.png" height="27"></a><a href='https://www.linkedin.com/in/fcakyon/' target='_blank'><img src="https://img.icons8.com/fluency/48/000000/linkedin.png" height="30"></a> <a href='https://fcakyon.medium.com/' target='_blank'><img src="https://img.icons8.com/ios-filled/48/000000/medium-monogram.png" height="26"></a>
119
+ </p>
120
+ """,
121
+ unsafe_allow_html=True,
122
+ )
123
+
124
+ st.write("##")
125
+
126
+ with st.expander("Usage"):
127
+ st.markdown(
128
+ """
129
+ <p>
130
+ 1. Upload or select the input image 🖼️
131
+ <br />
132
+ 2. (Optional) Set SAHI parameters ✔️
133
+ <br />
134
+ 3. Press to "🚀 Perform Prediction"
135
+ <br />
136
+ 4. Enjoy sliding image comparison 🔥
137
+ </p>
138
+ """,
139
+ unsafe_allow_html=True,
140
+ )
141
+
142
+ st.write("##")
143
+
144
+ col1, col2, col3 = st.columns([6, 1, 6])
145
+ with col1:
146
+ st.markdown(f"##### Set input image:")
147
+
148
+ # set input image by upload
149
+ image_file = st.file_uploader(
150
+ "Upload an image to test:", type=["jpg", "jpeg", "png"]
151
+ )
152
+
153
+ # set input image from exapmles
154
+ def slider_func(option):
155
+ option_to_id = {
156
+ "apple_tree.jpg": str(1),
157
+ "highway.jpg": str(2),
158
+ "highway2.jpg": str(3),
159
+ "highway3.jpg": str(4),
160
+ }
161
+ return option_to_id[option]
162
+
163
+ slider = st.select_slider(
164
+ "Or select from example images:",
165
+ options=["apple_tree.jpg", "highway.jpg", "highway2.jpg", "highway3.jpg"],
166
+ format_func=slider_func,
167
+ value="highway2.jpg",
168
+ )
169
+
170
+ # visualize input image
171
+ if image_file is not None:
172
+ image = Image.open(image_file)
173
+ else:
174
+ image = sahi.utils.cv.read_image_as_pil(IMAGE_TO_URL[slider])
175
+ st.image(image, width=300)
176
+
177
+ with col3:
178
+ st.markdown(f"##### Set SAHI parameters:")
179
+
180
+ slice_size = st.number_input("slice_size", min_value=256, value=512, step=256)
181
+ overlap_ratio = st.number_input(
182
+ "overlap_ratio", min_value=0.0, max_value=0.6, value=0.2, step=0.2
183
+ )
184
+ postprocess_type = st.selectbox(
185
+ "postprocess_type", options=["NMS", "GREEDYNMM"], index=0
186
+ )
187
+ postprocess_match_metric = st.selectbox(
188
+ "postprocess_match_metric", options=["IOU", "IOS"], index=0
189
+ )
190
+ postprocess_match_threshold = st.number_input(
191
+ "postprocess_match_threshold", value=0.5, step=0.1
192
+ )
193
+ postprocess_class_agnostic = st.checkbox("postprocess_class_agnostic", value=True)
194
+
195
+ col1, col2, col3 = st.columns([4, 3, 4])
196
+ with col2:
197
+ submit = st.button("🚀 Perform Prediction")
198
+
199
+ if submit:
200
+ # perform prediction
201
+ with st.spinner(
202
+ text="Downloading model weight.. "
203
+ + st.session_state["last_spinner_texts"].get()
204
+ ):
205
+ detection_model = get_model()
206
+
207
+ image_size = 416
208
+
209
+ with st.spinner(
210
+ text="Performing prediction.. " + st.session_state["last_spinner_texts"].get()
211
+ ):
212
+ output_1, output_2 = sahi_mmdet_inference(
213
+ image,
214
+ detection_model,
215
+ image_size=image_size,
216
+ slice_height=slice_size,
217
+ slice_width=slice_size,
218
+ overlap_height_ratio=overlap_ratio,
219
+ overlap_width_ratio=overlap_ratio,
220
+ postprocess_type=postprocess_type,
221
+ postprocess_match_metric=postprocess_match_metric,
222
+ postprocess_match_threshold=postprocess_match_threshold,
223
+ postprocess_class_agnostic=postprocess_class_agnostic,
224
+ )
225
+
226
+ st.session_state["output_1"] = output_1
227
+ st.session_state["output_2"] = output_2
228
+
229
+ st.markdown(f"##### YOLOX Standard vs SAHI Prediction:")
230
+ static_component = image_comparison(
231
+ img1=st.session_state["output_1"],
232
+ img2=st.session_state["output_2"],
233
+ label1="YOLOX",
234
+ label2="SAHI+YOLOX",
235
+ width=700,
236
+ starting_position=50,
237
+ show_labels=True,
238
+ make_responsive=True,
239
+ in_memory=True,
240
+ )
241
+ st.markdown(
242
+ """
243
+ <p style='text-align: center'>
244
+ prepared with <a href='https://github.com/fcakyon/streamlit-image-comparison' target='_blank'>streamlit-image-comparison</a>
245
+ </p>
246
+ """,
247
+ unsafe_allow_html=True,
248
+ )
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ libgl1
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ -f https://download.pytorch.org/whl/torch_stable.html
2
+ -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.10.0/index.html
3
+ torch==1.12.1+cpu
4
+ torchvision==0.13.1+cpu
5
+ sahi==0.11.6
6
+ mmdet==2.25.2
7
+ mmcv-full==1.6.1
8
+ streamlit-image-comparison==0.0.4
9
+ streamlit==1.22.0
utils.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy
2
+ import sahi.predict
3
+ import sahi.utils
4
+ from PIL import Image
5
+
6
+ TEMP_DIR = "temp"
7
+
8
+
9
+ def sahi_mmdet_inference(
10
+ image,
11
+ detection_model,
12
+ slice_height=512,
13
+ slice_width=512,
14
+ overlap_height_ratio=0.2,
15
+ overlap_width_ratio=0.2,
16
+ image_size=640,
17
+ postprocess_type="GREEDYNMM",
18
+ postprocess_match_metric="IOS",
19
+ postprocess_match_threshold=0.5,
20
+ postprocess_class_agnostic=False,
21
+ ):
22
+
23
+ # standard inference
24
+ detection_model.image_size = image_size
25
+ prediction_result_1 = sahi.predict.get_prediction(
26
+ image=image, detection_model=detection_model
27
+ )
28
+ visual_result_1 = sahi.utils.cv.visualize_object_predictions(
29
+ image=numpy.array(image),
30
+ object_prediction_list=prediction_result_1.object_prediction_list,
31
+ )
32
+ output_1 = Image.fromarray(visual_result_1["image"])
33
+
34
+ # sliced inference
35
+ prediction_result_2 = sahi.predict.get_sliced_prediction(
36
+ image=image,
37
+ detection_model=detection_model,
38
+ slice_height=slice_height,
39
+ slice_width=slice_width,
40
+ overlap_height_ratio=overlap_height_ratio,
41
+ overlap_width_ratio=overlap_width_ratio,
42
+ postprocess_type=postprocess_type,
43
+ postprocess_match_metric=postprocess_match_metric,
44
+ postprocess_match_threshold=postprocess_match_threshold,
45
+ postprocess_class_agnostic=postprocess_class_agnostic,
46
+ )
47
+ visual_result_2 = sahi.utils.cv.visualize_object_predictions(
48
+ image=numpy.array(image),
49
+ object_prediction_list=prediction_result_2.object_prediction_list,
50
+ )
51
+
52
+ output_2 = Image.fromarray(visual_result_2["image"])
53
+
54
+ return output_1, output_2