jtefera commited on
Commit
6bcb009
1 Parent(s): 96336aa

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .flake8 +3 -0
  2. .gitattributes +1 -0
  3. .github/ISSUE_TEMPLATE/bug_report.md +37 -0
  4. .github/workflows/stale.yml +27 -0
  5. .gitignore +14 -0
  6. LICENSE +661 -0
  7. README.md +96 -8
  8. __pycache__/settings.cpython-310.pyc +0 -0
  9. clip/__init__.py +1 -0
  10. clip/bpe_simple_vocab_16e6.txt.gz +3 -0
  11. clip/clip.py +245 -0
  12. clip/clipseg.py +538 -0
  13. clip/model.py +436 -0
  14. clip/simple_tokenizer.py +132 -0
  15. clip/vitseg.py +286 -0
  16. config.yaml +15 -0
  17. docs/screenshot.png +3 -0
  18. installer/installer.py +83 -0
  19. installer/windows_run.bat +80 -0
  20. models/CLIP/rd64-uni-refined.pth +3 -0
  21. models/CodeFormer/CodeFormerv0.1.onnx +3 -0
  22. models/DMDNet.pth +3 -0
  23. models/GFPGANv1.4.onnx +3 -0
  24. models/GPEN-BFR-512.onnx +3 -0
  25. models/inswapper_128.onnx +3 -0
  26. mypy.ini +7 -0
  27. requirements.txt +21 -0
  28. roop-unleashed.ipynb +184 -0
  29. roop/FaceSet.py +20 -0
  30. roop/ProcessEntry.py +7 -0
  31. roop/ProcessMgr.py +457 -0
  32. roop/ProcessOptions.py +9 -0
  33. roop/__init__.py +0 -0
  34. roop/__pycache__/FaceSet.cpython-310.pyc +0 -0
  35. roop/__pycache__/ProcessEntry.cpython-310.pyc +0 -0
  36. roop/__pycache__/ProcessMgr.cpython-310.pyc +0 -0
  37. roop/__pycache__/ProcessOptions.cpython-310.pyc +0 -0
  38. roop/__pycache__/__init__.cpython-310.pyc +0 -0
  39. roop/__pycache__/capturer.cpython-310.pyc +0 -0
  40. roop/__pycache__/core.cpython-310.pyc +0 -0
  41. roop/__pycache__/face_util.cpython-310.pyc +0 -0
  42. roop/__pycache__/ffmpeg_writer.cpython-310.pyc +0 -0
  43. roop/__pycache__/globals.cpython-310.pyc +0 -0
  44. roop/__pycache__/metadata.cpython-310.pyc +0 -0
  45. roop/__pycache__/template_parser.cpython-310.pyc +0 -0
  46. roop/__pycache__/typing.cpython-310.pyc +0 -0
  47. roop/__pycache__/util_ffmpeg.cpython-310.pyc +0 -0
  48. roop/__pycache__/utilities.cpython-310.pyc +0 -0
  49. roop/capturer.py +30 -0
  50. roop/core.py +360 -0
.flake8 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [flake8]
2
+ select = E3, E4, F
3
+ per-file-ignores = roop/core.py:E402
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ docs/screenshot.png filter=lfs diff=lfs merge=lfs -text
.github/ISSUE_TEMPLATE/bug_report.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ name: Bug report
3
+ about: Create a report to help us improve
4
+ title: ''
5
+ labels: ''
6
+ assignees: ''
7
+
8
+ ---
9
+
10
+ **Describe the bug**
11
+ A clear and concise description of what the bug is.
12
+
13
+ **To Reproduce**
14
+ Steps to reproduce the behavior:
15
+ 1. Go to '...'
16
+ 2. Click on '....'
17
+ 3. Scroll down to '....'
18
+ 4. See error
19
+
20
+ **Details**
21
+ What OS are you using?
22
+ - [ ] Linux
23
+ - [ ] Linux in WSL
24
+ - [ ] Windows
25
+ - [ ] Mac
26
+
27
+ Are you using a GPU?
28
+ - [ ] No. CPU FTW
29
+ - [ ] NVIDIA
30
+ - [ ] AMD
31
+ - [ ] Intel
32
+ - [ ] Mac
33
+
34
+ **Which version of roop unleashed are you using?**
35
+
36
+ **Screenshots**
37
+ If applicable, add screenshots to help explain your problem.
.github/workflows/stale.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This workflow warns and then closes issues and PRs that have had no activity for a specified amount of time.
2
+ #
3
+ # You can adjust the behavior by modifying this file.
4
+ # For more information, see:
5
+ # https://github.com/actions/stale
6
+ name: Mark stale issues and pull requests
7
+
8
+ on:
9
+ schedule:
10
+ - cron: '32 0 * * *'
11
+
12
+ jobs:
13
+ stale:
14
+
15
+ runs-on: ubuntu-latest
16
+ permissions:
17
+ issues: write
18
+ pull-requests: write
19
+
20
+ steps:
21
+ - uses: actions/stale@v5
22
+ with:
23
+ repo-token: ${{ secrets.GITHUB_TOKEN }}
24
+ stale-issue-message: 'Stale issue message'
25
+ stale-pr-message: 'Stale pull request message'
26
+ stale-issue-label: 'no-issue-activity'
27
+ stale-pr-label: 'no-pr-activity'
.gitignore ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .vs
2
+ .idea
3
+ models
4
+ temp
5
+ __pycache__
6
+ *.pth
7
+ /start.bat
8
+ /env
9
+ .vscode
10
+ output
11
+ temp
12
+ config.yaml
13
+ run.bat
14
+ venv
LICENSE ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU AFFERO GENERAL PUBLIC LICENSE
2
+ Version 3, 19 November 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU Affero General Public License is a free, copyleft license for
11
+ software and other kinds of works, specifically designed to ensure
12
+ cooperation with the community in the case of network server software.
13
+
14
+ The licenses for most software and other practical works are designed
15
+ to take away your freedom to share and change the works. By contrast,
16
+ our General Public Licenses are intended to guarantee your freedom to
17
+ share and change all versions of a program--to make sure it remains free
18
+ software for all its users.
19
+
20
+ When we speak of free software, we are referring to freedom, not
21
+ price. Our General Public Licenses are designed to make sure that you
22
+ have the freedom to distribute copies of free software (and charge for
23
+ them if you wish), that you receive source code or can get it if you
24
+ want it, that you can change the software or use pieces of it in new
25
+ free programs, and that you know you can do these things.
26
+
27
+ Developers that use our General Public Licenses protect your rights
28
+ with two steps: (1) assert copyright on the software, and (2) offer
29
+ you this License which gives you legal permission to copy, distribute
30
+ and/or modify the software.
31
+
32
+ A secondary benefit of defending all users' freedom is that
33
+ improvements made in alternate versions of the program, if they
34
+ receive widespread use, become available for other developers to
35
+ incorporate. Many developers of free software are heartened and
36
+ encouraged by the resulting cooperation. However, in the case of
37
+ software used on network servers, this result may fail to come about.
38
+ The GNU General Public License permits making a modified version and
39
+ letting the public access it on a server without ever releasing its
40
+ source code to the public.
41
+
42
+ The GNU Affero General Public License is designed specifically to
43
+ ensure that, in such cases, the modified source code becomes available
44
+ to the community. It requires the operator of a network server to
45
+ provide the source code of the modified version running there to the
46
+ users of that server. Therefore, public use of a modified version, on
47
+ a publicly accessible server, gives the public access to the source
48
+ code of the modified version.
49
+
50
+ An older license, called the Affero General Public License and
51
+ published by Affero, was designed to accomplish similar goals. This is
52
+ a different license, not a version of the Affero GPL, but Affero has
53
+ released a new version of the Affero GPL which permits relicensing under
54
+ this license.
55
+
56
+ The precise terms and conditions for copying, distribution and
57
+ modification follow.
58
+
59
+ TERMS AND CONDITIONS
60
+
61
+ 0. Definitions.
62
+
63
+ "This License" refers to version 3 of the GNU Affero General Public License.
64
+
65
+ "Copyright" also means copyright-like laws that apply to other kinds of
66
+ works, such as semiconductor masks.
67
+
68
+ "The Program" refers to any copyrightable work licensed under this
69
+ License. Each licensee is addressed as "you". "Licensees" and
70
+ "recipients" may be individuals or organizations.
71
+
72
+ To "modify" a work means to copy from or adapt all or part of the work
73
+ in a fashion requiring copyright permission, other than the making of an
74
+ exact copy. The resulting work is called a "modified version" of the
75
+ earlier work or a work "based on" the earlier work.
76
+
77
+ A "covered work" means either the unmodified Program or a work based
78
+ on the Program.
79
+
80
+ To "propagate" a work means to do anything with it that, without
81
+ permission, would make you directly or secondarily liable for
82
+ infringement under applicable copyright law, except executing it on a
83
+ computer or modifying a private copy. Propagation includes copying,
84
+ distribution (with or without modification), making available to the
85
+ public, and in some countries other activities as well.
86
+
87
+ To "convey" a work means any kind of propagation that enables other
88
+ parties to make or receive copies. Mere interaction with a user through
89
+ a computer network, with no transfer of a copy, is not conveying.
90
+
91
+ An interactive user interface displays "Appropriate Legal Notices"
92
+ to the extent that it includes a convenient and prominently visible
93
+ feature that (1) displays an appropriate copyright notice, and (2)
94
+ tells the user that there is no warranty for the work (except to the
95
+ extent that warranties are provided), that licensees may convey the
96
+ work under this License, and how to view a copy of this License. If
97
+ the interface presents a list of user commands or options, such as a
98
+ menu, a prominent item in the list meets this criterion.
99
+
100
+ 1. Source Code.
101
+
102
+ The "source code" for a work means the preferred form of the work
103
+ for making modifications to it. "Object code" means any non-source
104
+ form of a work.
105
+
106
+ A "Standard Interface" means an interface that either is an official
107
+ standard defined by a recognized standards body, or, in the case of
108
+ interfaces specified for a particular programming language, one that
109
+ is widely used among developers working in that language.
110
+
111
+ The "System Libraries" of an executable work include anything, other
112
+ than the work as a whole, that (a) is included in the normal form of
113
+ packaging a Major Component, but which is not part of that Major
114
+ Component, and (b) serves only to enable use of the work with that
115
+ Major Component, or to implement a Standard Interface for which an
116
+ implementation is available to the public in source code form. A
117
+ "Major Component", in this context, means a major essential component
118
+ (kernel, window system, and so on) of the specific operating system
119
+ (if any) on which the executable work runs, or a compiler used to
120
+ produce the work, or an object code interpreter used to run it.
121
+
122
+ The "Corresponding Source" for a work in object code form means all
123
+ the source code needed to generate, install, and (for an executable
124
+ work) run the object code and to modify the work, including scripts to
125
+ control those activities. However, it does not include the work's
126
+ System Libraries, or general-purpose tools or generally available free
127
+ programs which are used unmodified in performing those activities but
128
+ which are not part of the work. For example, Corresponding Source
129
+ includes interface definition files associated with source files for
130
+ the work, and the source code for shared libraries and dynamically
131
+ linked subprograms that the work is specifically designed to require,
132
+ such as by intimate data communication or control flow between those
133
+ subprograms and other parts of the work.
134
+
135
+ The Corresponding Source need not include anything that users
136
+ can regenerate automatically from other parts of the Corresponding
137
+ Source.
138
+
139
+ The Corresponding Source for a work in source code form is that
140
+ same work.
141
+
142
+ 2. Basic Permissions.
143
+
144
+ All rights granted under this License are granted for the term of
145
+ copyright on the Program, and are irrevocable provided the stated
146
+ conditions are met. This License explicitly affirms your unlimited
147
+ permission to run the unmodified Program. The output from running a
148
+ covered work is covered by this License only if the output, given its
149
+ content, constitutes a covered work. This License acknowledges your
150
+ rights of fair use or other equivalent, as provided by copyright law.
151
+
152
+ You may make, run and propagate covered works that you do not
153
+ convey, without conditions so long as your license otherwise remains
154
+ in force. You may convey covered works to others for the sole purpose
155
+ of having them make modifications exclusively for you, or provide you
156
+ with facilities for running those works, provided that you comply with
157
+ the terms of this License in conveying all material for which you do
158
+ not control copyright. Those thus making or running the covered works
159
+ for you must do so exclusively on your behalf, under your direction
160
+ and control, on terms that prohibit them from making any copies of
161
+ your copyrighted material outside their relationship with you.
162
+
163
+ Conveying under any other circumstances is permitted solely under
164
+ the conditions stated below. Sublicensing is not allowed; section 10
165
+ makes it unnecessary.
166
+
167
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168
+
169
+ No covered work shall be deemed part of an effective technological
170
+ measure under any applicable law fulfilling obligations under article
171
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172
+ similar laws prohibiting or restricting circumvention of such
173
+ measures.
174
+
175
+ When you convey a covered work, you waive any legal power to forbid
176
+ circumvention of technological measures to the extent such circumvention
177
+ is effected by exercising rights under this License with respect to
178
+ the covered work, and you disclaim any intention to limit operation or
179
+ modification of the work as a means of enforcing, against the work's
180
+ users, your or third parties' legal rights to forbid circumvention of
181
+ technological measures.
182
+
183
+ 4. Conveying Verbatim Copies.
184
+
185
+ You may convey verbatim copies of the Program's source code as you
186
+ receive it, in any medium, provided that you conspicuously and
187
+ appropriately publish on each copy an appropriate copyright notice;
188
+ keep intact all notices stating that this License and any
189
+ non-permissive terms added in accord with section 7 apply to the code;
190
+ keep intact all notices of the absence of any warranty; and give all
191
+ recipients a copy of this License along with the Program.
192
+
193
+ You may charge any price or no price for each copy that you convey,
194
+ and you may offer support or warranty protection for a fee.
195
+
196
+ 5. Conveying Modified Source Versions.
197
+
198
+ You may convey a work based on the Program, or the modifications to
199
+ produce it from the Program, in the form of source code under the
200
+ terms of section 4, provided that you also meet all of these conditions:
201
+
202
+ a) The work must carry prominent notices stating that you modified
203
+ it, and giving a relevant date.
204
+
205
+ b) The work must carry prominent notices stating that it is
206
+ released under this License and any conditions added under section
207
+ 7. This requirement modifies the requirement in section 4 to
208
+ "keep intact all notices".
209
+
210
+ c) You must license the entire work, as a whole, under this
211
+ License to anyone who comes into possession of a copy. This
212
+ License will therefore apply, along with any applicable section 7
213
+ additional terms, to the whole of the work, and all its parts,
214
+ regardless of how they are packaged. This License gives no
215
+ permission to license the work in any other way, but it does not
216
+ invalidate such permission if you have separately received it.
217
+
218
+ d) If the work has interactive user interfaces, each must display
219
+ Appropriate Legal Notices; however, if the Program has interactive
220
+ interfaces that do not display Appropriate Legal Notices, your
221
+ work need not make them do so.
222
+
223
+ A compilation of a covered work with other separate and independent
224
+ works, which are not by their nature extensions of the covered work,
225
+ and which are not combined with it such as to form a larger program,
226
+ in or on a volume of a storage or distribution medium, is called an
227
+ "aggregate" if the compilation and its resulting copyright are not
228
+ used to limit the access or legal rights of the compilation's users
229
+ beyond what the individual works permit. Inclusion of a covered work
230
+ in an aggregate does not cause this License to apply to the other
231
+ parts of the aggregate.
232
+
233
+ 6. Conveying Non-Source Forms.
234
+
235
+ You may convey a covered work in object code form under the terms
236
+ of sections 4 and 5, provided that you also convey the
237
+ machine-readable Corresponding Source under the terms of this License,
238
+ in one of these ways:
239
+
240
+ a) Convey the object code in, or embodied in, a physical product
241
+ (including a physical distribution medium), accompanied by the
242
+ Corresponding Source fixed on a durable physical medium
243
+ customarily used for software interchange.
244
+
245
+ b) Convey the object code in, or embodied in, a physical product
246
+ (including a physical distribution medium), accompanied by a
247
+ written offer, valid for at least three years and valid for as
248
+ long as you offer spare parts or customer support for that product
249
+ model, to give anyone who possesses the object code either (1) a
250
+ copy of the Corresponding Source for all the software in the
251
+ product that is covered by this License, on a durable physical
252
+ medium customarily used for software interchange, for a price no
253
+ more than your reasonable cost of physically performing this
254
+ conveying of source, or (2) access to copy the
255
+ Corresponding Source from a network server at no charge.
256
+
257
+ c) Convey individual copies of the object code with a copy of the
258
+ written offer to provide the Corresponding Source. This
259
+ alternative is allowed only occasionally and noncommercially, and
260
+ only if you received the object code with such an offer, in accord
261
+ with subsection 6b.
262
+
263
+ d) Convey the object code by offering access from a designated
264
+ place (gratis or for a charge), and offer equivalent access to the
265
+ Corresponding Source in the same way through the same place at no
266
+ further charge. You need not require recipients to copy the
267
+ Corresponding Source along with the object code. If the place to
268
+ copy the object code is a network server, the Corresponding Source
269
+ may be on a different server (operated by you or a third party)
270
+ that supports equivalent copying facilities, provided you maintain
271
+ clear directions next to the object code saying where to find the
272
+ Corresponding Source. Regardless of what server hosts the
273
+ Corresponding Source, you remain obligated to ensure that it is
274
+ available for as long as needed to satisfy these requirements.
275
+
276
+ e) Convey the object code using peer-to-peer transmission, provided
277
+ you inform other peers where the object code and Corresponding
278
+ Source of the work are being offered to the general public at no
279
+ charge under subsection 6d.
280
+
281
+ A separable portion of the object code, whose source code is excluded
282
+ from the Corresponding Source as a System Library, need not be
283
+ included in conveying the object code work.
284
+
285
+ A "User Product" is either (1) a "consumer product", which means any
286
+ tangible personal property which is normally used for personal, family,
287
+ or household purposes, or (2) anything designed or sold for incorporation
288
+ into a dwelling. In determining whether a product is a consumer product,
289
+ doubtful cases shall be resolved in favor of coverage. For a particular
290
+ product received by a particular user, "normally used" refers to a
291
+ typical or common use of that class of product, regardless of the status
292
+ of the particular user or of the way in which the particular user
293
+ actually uses, or expects or is expected to use, the product. A product
294
+ is a consumer product regardless of whether the product has substantial
295
+ commercial, industrial or non-consumer uses, unless such uses represent
296
+ the only significant mode of use of the product.
297
+
298
+ "Installation Information" for a User Product means any methods,
299
+ procedures, authorization keys, or other information required to install
300
+ and execute modified versions of a covered work in that User Product from
301
+ a modified version of its Corresponding Source. The information must
302
+ suffice to ensure that the continued functioning of the modified object
303
+ code is in no case prevented or interfered with solely because
304
+ modification has been made.
305
+
306
+ If you convey an object code work under this section in, or with, or
307
+ specifically for use in, a User Product, and the conveying occurs as
308
+ part of a transaction in which the right of possession and use of the
309
+ User Product is transferred to the recipient in perpetuity or for a
310
+ fixed term (regardless of how the transaction is characterized), the
311
+ Corresponding Source conveyed under this section must be accompanied
312
+ by the Installation Information. But this requirement does not apply
313
+ if neither you nor any third party retains the ability to install
314
+ modified object code on the User Product (for example, the work has
315
+ been installed in ROM).
316
+
317
+ The requirement to provide Installation Information does not include a
318
+ requirement to continue to provide support service, warranty, or updates
319
+ for a work that has been modified or installed by the recipient, or for
320
+ the User Product in which it has been modified or installed. Access to a
321
+ network may be denied when the modification itself materially and
322
+ adversely affects the operation of the network or violates the rules and
323
+ protocols for communication across the network.
324
+
325
+ Corresponding Source conveyed, and Installation Information provided,
326
+ in accord with this section must be in a format that is publicly
327
+ documented (and with an implementation available to the public in
328
+ source code form), and must require no special password or key for
329
+ unpacking, reading or copying.
330
+
331
+ 7. Additional Terms.
332
+
333
+ "Additional permissions" are terms that supplement the terms of this
334
+ License by making exceptions from one or more of its conditions.
335
+ Additional permissions that are applicable to the entire Program shall
336
+ be treated as though they were included in this License, to the extent
337
+ that they are valid under applicable law. If additional permissions
338
+ apply only to part of the Program, that part may be used separately
339
+ under those permissions, but the entire Program remains governed by
340
+ this License without regard to the additional permissions.
341
+
342
+ When you convey a copy of a covered work, you may at your option
343
+ remove any additional permissions from that copy, or from any part of
344
+ it. (Additional permissions may be written to require their own
345
+ removal in certain cases when you modify the work.) You may place
346
+ additional permissions on material, added by you to a covered work,
347
+ for which you have or can give appropriate copyright permission.
348
+
349
+ Notwithstanding any other provision of this License, for material you
350
+ add to a covered work, you may (if authorized by the copyright holders of
351
+ that material) supplement the terms of this License with terms:
352
+
353
+ a) Disclaiming warranty or limiting liability differently from the
354
+ terms of sections 15 and 16 of this License; or
355
+
356
+ b) Requiring preservation of specified reasonable legal notices or
357
+ author attributions in that material or in the Appropriate Legal
358
+ Notices displayed by works containing it; or
359
+
360
+ c) Prohibiting misrepresentation of the origin of that material, or
361
+ requiring that modified versions of such material be marked in
362
+ reasonable ways as different from the original version; or
363
+
364
+ d) Limiting the use for publicity purposes of names of licensors or
365
+ authors of the material; or
366
+
367
+ e) Declining to grant rights under trademark law for use of some
368
+ trade names, trademarks, or service marks; or
369
+
370
+ f) Requiring indemnification of licensors and authors of that
371
+ material by anyone who conveys the material (or modified versions of
372
+ it) with contractual assumptions of liability to the recipient, for
373
+ any liability that these contractual assumptions directly impose on
374
+ those licensors and authors.
375
+
376
+ All other non-permissive additional terms are considered "further
377
+ restrictions" within the meaning of section 10. If the Program as you
378
+ received it, or any part of it, contains a notice stating that it is
379
+ governed by this License along with a term that is a further
380
+ restriction, you may remove that term. If a license document contains
381
+ a further restriction but permits relicensing or conveying under this
382
+ License, you may add to a covered work material governed by the terms
383
+ of that license document, provided that the further restriction does
384
+ not survive such relicensing or conveying.
385
+
386
+ If you add terms to a covered work in accord with this section, you
387
+ must place, in the relevant source files, a statement of the
388
+ additional terms that apply to those files, or a notice indicating
389
+ where to find the applicable terms.
390
+
391
+ Additional terms, permissive or non-permissive, may be stated in the
392
+ form of a separately written license, or stated as exceptions;
393
+ the above requirements apply either way.
394
+
395
+ 8. Termination.
396
+
397
+ You may not propagate or modify a covered work except as expressly
398
+ provided under this License. Any attempt otherwise to propagate or
399
+ modify it is void, and will automatically terminate your rights under
400
+ this License (including any patent licenses granted under the third
401
+ paragraph of section 11).
402
+
403
+ However, if you cease all violation of this License, then your
404
+ license from a particular copyright holder is reinstated (a)
405
+ provisionally, unless and until the copyright holder explicitly and
406
+ finally terminates your license, and (b) permanently, if the copyright
407
+ holder fails to notify you of the violation by some reasonable means
408
+ prior to 60 days after the cessation.
409
+
410
+ Moreover, your license from a particular copyright holder is
411
+ reinstated permanently if the copyright holder notifies you of the
412
+ violation by some reasonable means, this is the first time you have
413
+ received notice of violation of this License (for any work) from that
414
+ copyright holder, and you cure the violation prior to 30 days after
415
+ your receipt of the notice.
416
+
417
+ Termination of your rights under this section does not terminate the
418
+ licenses of parties who have received copies or rights from you under
419
+ this License. If your rights have been terminated and not permanently
420
+ reinstated, you do not qualify to receive new licenses for the same
421
+ material under section 10.
422
+
423
+ 9. Acceptance Not Required for Having Copies.
424
+
425
+ You are not required to accept this License in order to receive or
426
+ run a copy of the Program. Ancillary propagation of a covered work
427
+ occurring solely as a consequence of using peer-to-peer transmission
428
+ to receive a copy likewise does not require acceptance. However,
429
+ nothing other than this License grants you permission to propagate or
430
+ modify any covered work. These actions infringe copyright if you do
431
+ not accept this License. Therefore, by modifying or propagating a
432
+ covered work, you indicate your acceptance of this License to do so.
433
+
434
+ 10. Automatic Licensing of Downstream Recipients.
435
+
436
+ Each time you convey a covered work, the recipient automatically
437
+ receives a license from the original licensors, to run, modify and
438
+ propagate that work, subject to this License. You are not responsible
439
+ for enforcing compliance by third parties with this License.
440
+
441
+ An "entity transaction" is a transaction transferring control of an
442
+ organization, or substantially all assets of one, or subdividing an
443
+ organization, or merging organizations. If propagation of a covered
444
+ work results from an entity transaction, each party to that
445
+ transaction who receives a copy of the work also receives whatever
446
+ licenses to the work the party's predecessor in interest had or could
447
+ give under the previous paragraph, plus a right to possession of the
448
+ Corresponding Source of the work from the predecessor in interest, if
449
+ the predecessor has it or can get it with reasonable efforts.
450
+
451
+ You may not impose any further restrictions on the exercise of the
452
+ rights granted or affirmed under this License. For example, you may
453
+ not impose a license fee, royalty, or other charge for exercise of
454
+ rights granted under this License, and you may not initiate litigation
455
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
456
+ any patent claim is infringed by making, using, selling, offering for
457
+ sale, or importing the Program or any portion of it.
458
+
459
+ 11. Patents.
460
+
461
+ A "contributor" is a copyright holder who authorizes use under this
462
+ License of the Program or a work on which the Program is based. The
463
+ work thus licensed is called the contributor's "contributor version".
464
+
465
+ A contributor's "essential patent claims" are all patent claims
466
+ owned or controlled by the contributor, whether already acquired or
467
+ hereafter acquired, that would be infringed by some manner, permitted
468
+ by this License, of making, using, or selling its contributor version,
469
+ but do not include claims that would be infringed only as a
470
+ consequence of further modification of the contributor version. For
471
+ purposes of this definition, "control" includes the right to grant
472
+ patent sublicenses in a manner consistent with the requirements of
473
+ this License.
474
+
475
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
476
+ patent license under the contributor's essential patent claims, to
477
+ make, use, sell, offer for sale, import and otherwise run, modify and
478
+ propagate the contents of its contributor version.
479
+
480
+ In the following three paragraphs, a "patent license" is any express
481
+ agreement or commitment, however denominated, not to enforce a patent
482
+ (such as an express permission to practice a patent or covenant not to
483
+ sue for patent infringement). To "grant" such a patent license to a
484
+ party means to make such an agreement or commitment not to enforce a
485
+ patent against the party.
486
+
487
+ If you convey a covered work, knowingly relying on a patent license,
488
+ and the Corresponding Source of the work is not available for anyone
489
+ to copy, free of charge and under the terms of this License, through a
490
+ publicly available network server or other readily accessible means,
491
+ then you must either (1) cause the Corresponding Source to be so
492
+ available, or (2) arrange to deprive yourself of the benefit of the
493
+ patent license for this particular work, or (3) arrange, in a manner
494
+ consistent with the requirements of this License, to extend the patent
495
+ license to downstream recipients. "Knowingly relying" means you have
496
+ actual knowledge that, but for the patent license, your conveying the
497
+ covered work in a country, or your recipient's use of the covered work
498
+ in a country, would infringe one or more identifiable patents in that
499
+ country that you have reason to believe are valid.
500
+
501
+ If, pursuant to or in connection with a single transaction or
502
+ arrangement, you convey, or propagate by procuring conveyance of, a
503
+ covered work, and grant a patent license to some of the parties
504
+ receiving the covered work authorizing them to use, propagate, modify
505
+ or convey a specific copy of the covered work, then the patent license
506
+ you grant is automatically extended to all recipients of the covered
507
+ work and works based on it.
508
+
509
+ A patent license is "discriminatory" if it does not include within
510
+ the scope of its coverage, prohibits the exercise of, or is
511
+ conditioned on the non-exercise of one or more of the rights that are
512
+ specifically granted under this License. You may not convey a covered
513
+ work if you are a party to an arrangement with a third party that is
514
+ in the business of distributing software, under which you make payment
515
+ to the third party based on the extent of your activity of conveying
516
+ the work, and under which the third party grants, to any of the
517
+ parties who would receive the covered work from you, a discriminatory
518
+ patent license (a) in connection with copies of the covered work
519
+ conveyed by you (or copies made from those copies), or (b) primarily
520
+ for and in connection with specific products or compilations that
521
+ contain the covered work, unless you entered into that arrangement,
522
+ or that patent license was granted, prior to 28 March 2007.
523
+
524
+ Nothing in this License shall be construed as excluding or limiting
525
+ any implied license or other defenses to infringement that may
526
+ otherwise be available to you under applicable patent law.
527
+
528
+ 12. No Surrender of Others' Freedom.
529
+
530
+ If conditions are imposed on you (whether by court order, agreement or
531
+ otherwise) that contradict the conditions of this License, they do not
532
+ excuse you from the conditions of this License. If you cannot convey a
533
+ covered work so as to satisfy simultaneously your obligations under this
534
+ License and any other pertinent obligations, then as a consequence you may
535
+ not convey it at all. For example, if you agree to terms that obligate you
536
+ to collect a royalty for further conveying from those to whom you convey
537
+ the Program, the only way you could satisfy both those terms and this
538
+ License would be to refrain entirely from conveying the Program.
539
+
540
+ 13. Remote Network Interaction; Use with the GNU General Public License.
541
+
542
+ Notwithstanding any other provision of this License, if you modify the
543
+ Program, your modified version must prominently offer all users
544
+ interacting with it remotely through a computer network (if your version
545
+ supports such interaction) an opportunity to receive the Corresponding
546
+ Source of your version by providing access to the Corresponding Source
547
+ from a network server at no charge, through some standard or customary
548
+ means of facilitating copying of software. This Corresponding Source
549
+ shall include the Corresponding Source for any work covered by version 3
550
+ of the GNU General Public License that is incorporated pursuant to the
551
+ following paragraph.
552
+
553
+ Notwithstanding any other provision of this License, you have
554
+ permission to link or combine any covered work with a work licensed
555
+ under version 3 of the GNU General Public License into a single
556
+ combined work, and to convey the resulting work. The terms of this
557
+ License will continue to apply to the part which is the covered work,
558
+ but the work with which it is combined will remain governed by version
559
+ 3 of the GNU General Public License.
560
+
561
+ 14. Revised Versions of this License.
562
+
563
+ The Free Software Foundation may publish revised and/or new versions of
564
+ the GNU Affero General Public License from time to time. Such new versions
565
+ will be similar in spirit to the present version, but may differ in detail to
566
+ address new problems or concerns.
567
+
568
+ Each version is given a distinguishing version number. If the
569
+ Program specifies that a certain numbered version of the GNU Affero General
570
+ Public License "or any later version" applies to it, you have the
571
+ option of following the terms and conditions either of that numbered
572
+ version or of any later version published by the Free Software
573
+ Foundation. If the Program does not specify a version number of the
574
+ GNU Affero General Public License, you may choose any version ever published
575
+ by the Free Software Foundation.
576
+
577
+ If the Program specifies that a proxy can decide which future
578
+ versions of the GNU Affero General Public License can be used, that proxy's
579
+ public statement of acceptance of a version permanently authorizes you
580
+ to choose that version for the Program.
581
+
582
+ Later license versions may give you additional or different
583
+ permissions. However, no additional obligations are imposed on any
584
+ author or copyright holder as a result of your choosing to follow a
585
+ later version.
586
+
587
+ 15. Disclaimer of Warranty.
588
+
589
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597
+
598
+ 16. Limitation of Liability.
599
+
600
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608
+ SUCH DAMAGES.
609
+
610
+ 17. Interpretation of Sections 15 and 16.
611
+
612
+ If the disclaimer of warranty and limitation of liability provided
613
+ above cannot be given local legal effect according to their terms,
614
+ reviewing courts shall apply local law that most closely approximates
615
+ an absolute waiver of all civil liability in connection with the
616
+ Program, unless a warranty or assumption of liability accompanies a
617
+ copy of the Program in return for a fee.
618
+
619
+ END OF TERMS AND CONDITIONS
620
+
621
+ How to Apply These Terms to Your New Programs
622
+
623
+ If you develop a new program, and you want it to be of the greatest
624
+ possible use to the public, the best way to achieve this is to make it
625
+ free software which everyone can redistribute and change under these terms.
626
+
627
+ To do so, attach the following notices to the program. It is safest
628
+ to attach them to the start of each source file to most effectively
629
+ state the exclusion of warranty; and each file should have at least
630
+ the "copyright" line and a pointer to where the full notice is found.
631
+
632
+ <one line to give the program's name and a brief idea of what it does.>
633
+ Copyright (C) <year> <name of author>
634
+
635
+ This program is free software: you can redistribute it and/or modify
636
+ it under the terms of the GNU Affero General Public License as published
637
+ by the Free Software Foundation, either version 3 of the License, or
638
+ (at your option) any later version.
639
+
640
+ This program is distributed in the hope that it will be useful,
641
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
642
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643
+ GNU Affero General Public License for more details.
644
+
645
+ You should have received a copy of the GNU Affero General Public License
646
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
647
+
648
+ Also add information on how to contact you by electronic and paper mail.
649
+
650
+ If your software can interact with users remotely through a computer
651
+ network, you should also make sure that it provides a way for users to
652
+ get its source. For example, if your program is a web application, its
653
+ interface could display a "Source" link that leads users to an archive
654
+ of the code. There are many ways you could offer source, and different
655
+ solutions will be better for different programs; see section 13 for the
656
+ specific requirements.
657
+
658
+ You should also get your employer (if you work as a programmer) or school,
659
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
660
+ For more information on this, and how to apply and follow the GNU AGPL, see
661
+ <https://www.gnu.org/licenses/>.
README.md CHANGED
@@ -1,12 +1,100 @@
1
  ---
2
- title: Roop Unleashed
3
- emoji: 🌍
4
- colorFrom: green
5
- colorTo: green
6
  sdk: gradio
7
- sdk_version: 3.50.2
8
- app_file: app.py
9
- pinned: false
10
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: roop-unleashed
3
+ app_file: run.py
 
 
4
  sdk: gradio
5
+ sdk_version: 3.44.2
 
 
6
  ---
7
+ # roop-unleashed
8
+
9
+ [Changelog](#changelog) • [Usage](#usage) • [Wiki](https://github.com/C0untFloyd/roop-unleashed/wiki)
10
+
11
+
12
+ Uncensored Deepfakes for images and videos without training and an easy-to-use GUI.
13
+
14
+
15
+ ![Screen](https://github.com/C0untFloyd/roop-unleashed/assets/131583554/6ee6860d-efbe-4337-8c62-a67598863637)
16
+
17
+ ### Features
18
+
19
+ - Platform-independant Browser GUI
20
+ - Selection of multiple input/output faces in one go
21
+ - Many different swapping modes, first detected, face selections, by gender
22
+ - Batch processing of images/videos
23
+ - Masking of face occluders using text prompts
24
+ - Optional Face Restoration using different enhancers
25
+ - Preview swapping from different video frames
26
+ - Live Fake Cam using your webcam
27
+ - Extras Tab for cutting videos etc.
28
+ - Settings - storing configuration for next session
29
+ - Theme Support
30
+
31
+ and lots more...
32
+
33
+
34
+ ## Disclaimer
35
+
36
+ This project is for technical and academic use only.
37
+ Users of this software are expected to use this software responsibly while abiding the local law. If a face of a real person is being used, users are suggested to get consent from the concerned person and clearly mention that it is a deepfake when posting content online. Developers of this software will not be responsible for actions of end-users.
38
+ **Please do not apply it to illegal and unethical scenarios.**
39
+
40
+ In the event of violation of the legal and ethical requirements of the user's country or region, this code repository is exempt from liability
41
+
42
+ ### Installation
43
+
44
+ Please refer to the Wiki.
45
+
46
+
47
+
48
+
49
+ ### Usage
50
+
51
+ - Windows: run the `windows_run.bat` from the Installer.
52
+ - Linux: `python run.py`
53
+
54
+ <a target="_blank" href="https://colab.research.google.com/github/C0untFloyd/roop-unleashed/blob/main/roop-unleashed.ipynb">
55
+ <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
56
+ </a>
57
+
58
+
59
+ Additional commandline arguments are currently unsupported and settings should be done via the UI.
60
+
61
+ > Note: When you run this program for the first time, it will download some models roughly ~2Gb in size.
62
+
63
+
64
+
65
+
66
+ ### Changelog
67
+
68
+ **16.10.2023** v3.3.4
69
+
70
+ **11.8.2023** v2.7.0
71
+
72
+ Initial Gradio Version - old TkInter Version now deprecated
73
+
74
+ - Re-added unified padding to face enhancers
75
+ - Fixed DMDNet for all resolutions
76
+ - Selecting target face now automatically switches swapping mode to selected
77
+ - GPU providers are correctly set using the GUI (needs restart currently)
78
+ - Local output folder can be opened from page
79
+ - Unfinished extras functions disabled for now
80
+ - Installer checks out specific commit, allowing to go back to first install
81
+ - Updated readme for new gradio version
82
+ - Updated Colab
83
+
84
+
85
+ # Acknowledgements
86
+
87
+ Lots of ideas, code or pre-trained models used from the following projects:
88
+
89
+ https://github.com/deepinsight/insightface
90
+ https://github.com/s0md3v/roop
91
+ https://github.com/AUTOMATIC1111/stable-diffusion-webui
92
+ https://github.com/Hillobar/Rope
93
+ https://github.com/janvarev/chain-img-processor
94
+ https://github.com/TencentARC/GFPGAN
95
+ https://github.com/kadirnar/codeformer-pip
96
+ https://github.com/csxmli2016/DMDNet
97
+
98
+
99
+ Thanks to all developers!
100
 
 
__pycache__/settings.cpython-310.pyc ADDED
Binary file (2.16 kB). View file
 
clip/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .clip import *
clip/bpe_simple_vocab_16e6.txt.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
3
+ size 1356917
clip/clip.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import os
3
+ import urllib
4
+ import warnings
5
+ from typing import Any, Union, List
6
+ from pkg_resources import packaging
7
+
8
+ import torch
9
+ from PIL import Image
10
+ from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
11
+ from tqdm import tqdm
12
+
13
+ from .model import build_model
14
+ from .simple_tokenizer import SimpleTokenizer as _Tokenizer
15
+
16
+ try:
17
+ from torchvision.transforms import InterpolationMode
18
+ BICUBIC = InterpolationMode.BICUBIC
19
+ except ImportError:
20
+ BICUBIC = Image.BICUBIC
21
+
22
+
23
+ if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"):
24
+ warnings.warn("PyTorch version 1.7.1 or higher is recommended")
25
+
26
+
27
+ __all__ = ["available_models", "load", "tokenize"]
28
+ _tokenizer = _Tokenizer()
29
+
30
+ _MODELS = {
31
+ "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
32
+ "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
33
+ "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
34
+ "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
35
+ "RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
36
+ "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
37
+ "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
38
+ "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
39
+ "ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
40
+ }
41
+
42
+
43
+ def _download(url: str, root: str):
44
+ os.makedirs(root, exist_ok=True)
45
+ filename = os.path.basename(url)
46
+
47
+ expected_sha256 = url.split("/")[-2]
48
+ download_target = os.path.join(root, filename)
49
+
50
+ if os.path.exists(download_target) and not os.path.isfile(download_target):
51
+ raise RuntimeError(f"{download_target} exists and is not a regular file")
52
+
53
+ if os.path.isfile(download_target):
54
+ if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
55
+ return download_target
56
+ else:
57
+ warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
58
+
59
+ with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
60
+ with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
61
+ while True:
62
+ buffer = source.read(8192)
63
+ if not buffer:
64
+ break
65
+
66
+ output.write(buffer)
67
+ loop.update(len(buffer))
68
+
69
+ if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
70
+ raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match")
71
+
72
+ return download_target
73
+
74
+
75
+ def _convert_image_to_rgb(image):
76
+ return image.convert("RGB")
77
+
78
+
79
+ def _transform(n_px):
80
+ return Compose([
81
+ Resize(n_px, interpolation=BICUBIC),
82
+ CenterCrop(n_px),
83
+ _convert_image_to_rgb,
84
+ ToTensor(),
85
+ Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
86
+ ])
87
+
88
+
89
+ def available_models() -> List[str]:
90
+ """Returns the names of available CLIP models"""
91
+ return list(_MODELS.keys())
92
+
93
+
94
+ def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None):
95
+ """Load a CLIP model
96
+
97
+ Parameters
98
+ ----------
99
+ name : str
100
+ A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
101
+
102
+ device : Union[str, torch.device]
103
+ The device to put the loaded model
104
+
105
+ jit : bool
106
+ Whether to load the optimized JIT model or more hackable non-JIT model (default).
107
+
108
+ download_root: str
109
+ path to download the model files; by default, it uses "~/.cache/clip"
110
+
111
+ Returns
112
+ -------
113
+ model : torch.nn.Module
114
+ The CLIP model
115
+
116
+ preprocess : Callable[[PIL.Image], torch.Tensor]
117
+ A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
118
+ """
119
+ if name in _MODELS:
120
+ model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
121
+ elif os.path.isfile(name):
122
+ model_path = name
123
+ else:
124
+ raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
125
+
126
+ with open(model_path, 'rb') as opened_file:
127
+ try:
128
+ # loading JIT archive
129
+ model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval()
130
+ state_dict = None
131
+ except RuntimeError:
132
+ # loading saved state dict
133
+ if jit:
134
+ warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
135
+ jit = False
136
+ state_dict = torch.load(opened_file, map_location="cpu")
137
+
138
+ if not jit:
139
+ model = build_model(state_dict or model.state_dict()).to(device)
140
+ if str(device) == "cpu":
141
+ model.float()
142
+ return model, _transform(model.visual.input_resolution)
143
+
144
+ # patch the device names
145
+ device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
146
+ device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
147
+
148
+ def _node_get(node: torch._C.Node, key: str):
149
+ """Gets attributes of a node which is polymorphic over return type.
150
+
151
+ From https://github.com/pytorch/pytorch/pull/82628
152
+ """
153
+ sel = node.kindOf(key)
154
+ return getattr(node, sel)(key)
155
+
156
+ def patch_device(module):
157
+ try:
158
+ graphs = [module.graph] if hasattr(module, "graph") else []
159
+ except RuntimeError:
160
+ graphs = []
161
+
162
+ if hasattr(module, "forward1"):
163
+ graphs.append(module.forward1.graph)
164
+
165
+ for graph in graphs:
166
+ for node in graph.findAllNodes("prim::Constant"):
167
+ if "value" in node.attributeNames() and str(_node_get(node, "value")).startswith("cuda"):
168
+ node.copyAttributes(device_node)
169
+
170
+ model.apply(patch_device)
171
+ patch_device(model.encode_image)
172
+ patch_device(model.encode_text)
173
+
174
+ # patch dtype to float32 on CPU
175
+ if str(device) == "cpu":
176
+ float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
177
+ float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
178
+ float_node = float_input.node()
179
+
180
+ def patch_float(module):
181
+ try:
182
+ graphs = [module.graph] if hasattr(module, "graph") else []
183
+ except RuntimeError:
184
+ graphs = []
185
+
186
+ if hasattr(module, "forward1"):
187
+ graphs.append(module.forward1.graph)
188
+
189
+ for graph in graphs:
190
+ for node in graph.findAllNodes("aten::to"):
191
+ inputs = list(node.inputs())
192
+ for i in [1, 2]: # dtype can be the second or third argument to aten::to()
193
+ if _node_get(inputs[i].node(), "value") == 5:
194
+ inputs[i].node().copyAttributes(float_node)
195
+
196
+ model.apply(patch_float)
197
+ patch_float(model.encode_image)
198
+ patch_float(model.encode_text)
199
+
200
+ model.float()
201
+
202
+ return model, _transform(model.input_resolution.item())
203
+
204
+
205
+ def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]:
206
+ """
207
+ Returns the tokenized representation of given input string(s)
208
+
209
+ Parameters
210
+ ----------
211
+ texts : Union[str, List[str]]
212
+ An input string or a list of input strings to tokenize
213
+
214
+ context_length : int
215
+ The context length to use; all CLIP models use 77 as the context length
216
+
217
+ truncate: bool
218
+ Whether to truncate the text in case its encoding is longer than the context length
219
+
220
+ Returns
221
+ -------
222
+ A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
223
+ We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
224
+ """
225
+ if isinstance(texts, str):
226
+ texts = [texts]
227
+
228
+ sot_token = _tokenizer.encoder["<|startoftext|>"]
229
+ eot_token = _tokenizer.encoder["<|endoftext|>"]
230
+ all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
231
+ if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
232
+ result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
233
+ else:
234
+ result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)
235
+
236
+ for i, tokens in enumerate(all_tokens):
237
+ if len(tokens) > context_length:
238
+ if truncate:
239
+ tokens = tokens[:context_length]
240
+ tokens[-1] = eot_token
241
+ else:
242
+ raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
243
+ result[i, :len(tokens)] = torch.tensor(tokens)
244
+
245
+ return result
clip/clipseg.py ADDED
@@ -0,0 +1,538 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from os.path import basename, dirname, join, isfile
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as nnf
6
+ from torch.nn.modules.activation import ReLU
7
+
8
+
9
+ def get_prompt_list(prompt):
10
+ if prompt == 'plain':
11
+ return ['{}']
12
+ elif prompt == 'fixed':
13
+ return ['a photo of a {}.']
14
+ elif prompt == 'shuffle':
15
+ return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
16
+ elif prompt == 'shuffle+':
17
+ return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
18
+ 'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
19
+ 'a bad photo of a {}.', 'a photo of the {}.']
20
+ else:
21
+ raise ValueError('Invalid value for prompt')
22
+
23
+
24
+ def forward_multihead_attention(x, b, with_aff=False, attn_mask=None):
25
+ """
26
+ Simplified version of multihead attention (taken from torch source code but without tons of if clauses).
27
+ The mlp and layer norm come from CLIP.
28
+ x: input.
29
+ b: multihead attention module.
30
+ """
31
+
32
+ x_ = b.ln_1(x)
33
+ q, k, v = nnf.linear(x_, b.attn.in_proj_weight, b.attn.in_proj_bias).chunk(3, dim=-1)
34
+ tgt_len, bsz, embed_dim = q.size()
35
+
36
+ head_dim = embed_dim // b.attn.num_heads
37
+ scaling = float(head_dim) ** -0.5
38
+
39
+ q = q.contiguous().view(tgt_len, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
40
+ k = k.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
41
+ v = v.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
42
+
43
+ q = q * scaling
44
+
45
+ attn_output_weights = torch.bmm(q, k.transpose(1, 2)) # n_heads * batch_size, tokens^2, tokens^2
46
+ if attn_mask is not None:
47
+
48
+
49
+ attn_mask_type, attn_mask = attn_mask
50
+ n_heads = attn_output_weights.size(0) // attn_mask.size(0)
51
+ attn_mask = attn_mask.repeat(n_heads, 1)
52
+
53
+ if attn_mask_type == 'cls_token':
54
+ # the mask only affects similarities compared to the readout-token.
55
+ attn_output_weights[:, 0, 1:] = attn_output_weights[:, 0, 1:] * attn_mask[None,...]
56
+ # attn_output_weights[:, 0, 0] = 0*attn_output_weights[:, 0, 0]
57
+
58
+ if attn_mask_type == 'all':
59
+ # print(attn_output_weights.shape, attn_mask[:, None].shape)
60
+ attn_output_weights[:, 1:, 1:] = attn_output_weights[:, 1:, 1:] * attn_mask[:, None]
61
+
62
+
63
+ attn_output_weights = torch.softmax(attn_output_weights, dim=-1)
64
+
65
+ attn_output = torch.bmm(attn_output_weights, v)
66
+ attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
67
+ attn_output = b.attn.out_proj(attn_output)
68
+
69
+ x = x + attn_output
70
+ x = x + b.mlp(b.ln_2(x))
71
+
72
+ if with_aff:
73
+ return x, attn_output_weights
74
+ else:
75
+ return x
76
+
77
+
78
+ class CLIPDenseBase(nn.Module):
79
+
80
+ def __init__(self, version, reduce_cond, reduce_dim, prompt, n_tokens):
81
+ super().__init__()
82
+
83
+ import clip
84
+
85
+ # prec = torch.FloatTensor
86
+ self.clip_model, _ = clip.load(version, device='cpu', jit=False)
87
+ self.model = self.clip_model.visual
88
+
89
+ # if not None, scale conv weights such that we obtain n_tokens.
90
+ self.n_tokens = n_tokens
91
+
92
+ for p in self.clip_model.parameters():
93
+ p.requires_grad_(False)
94
+
95
+ # conditional
96
+ if reduce_cond is not None:
97
+ self.reduce_cond = nn.Linear(512, reduce_cond)
98
+ for p in self.reduce_cond.parameters():
99
+ p.requires_grad_(False)
100
+ else:
101
+ self.reduce_cond = None
102
+
103
+ self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
104
+ self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
105
+
106
+ self.reduce = nn.Linear(768, reduce_dim)
107
+
108
+ self.prompt_list = get_prompt_list(prompt)
109
+
110
+ # precomputed prompts
111
+ import pickle
112
+ if isfile('precomputed_prompt_vectors.pickle'):
113
+ precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
114
+ self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
115
+ else:
116
+ self.precomputed_prompts = dict()
117
+
118
+ def rescaled_pos_emb(self, new_size):
119
+ assert len(new_size) == 2
120
+
121
+ a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
122
+ b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
123
+ return torch.cat([self.model.positional_embedding[:1], b])
124
+
125
+ def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
126
+
127
+
128
+ with torch.no_grad():
129
+
130
+ inp_size = x_inp.shape[2:]
131
+
132
+ if self.n_tokens is not None:
133
+ stride2 = x_inp.shape[2] // self.n_tokens
134
+ conv_weight2 = nnf.interpolate(self.model.conv1.weight, (stride2, stride2), mode='bilinear', align_corners=True)
135
+ x = nnf.conv2d(x_inp, conv_weight2, bias=self.model.conv1.bias, stride=stride2, dilation=self.model.conv1.dilation)
136
+ else:
137
+ x = self.model.conv1(x_inp) # shape = [*, width, grid, grid]
138
+
139
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
140
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
141
+
142
+ x = torch.cat([self.model.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
143
+
144
+ standard_n_tokens = 50 if self.model.conv1.kernel_size[0] == 32 else 197
145
+
146
+ if x.shape[1] != standard_n_tokens:
147
+ new_shape = int(math.sqrt(x.shape[1]-1))
148
+ x = x + self.rescaled_pos_emb((new_shape, new_shape)).to(x.dtype)[None,:,:]
149
+ else:
150
+ x = x + self.model.positional_embedding.to(x.dtype)
151
+
152
+ x = self.model.ln_pre(x)
153
+
154
+ x = x.permute(1, 0, 2) # NLD -> LND
155
+
156
+ activations, affinities = [], []
157
+ for i, res_block in enumerate(self.model.transformer.resblocks):
158
+
159
+ if mask is not None:
160
+ mask_layer, mask_type, mask_tensor = mask
161
+ if mask_layer == i or mask_layer == 'all':
162
+ # import ipdb; ipdb.set_trace()
163
+ size = int(math.sqrt(x.shape[0] - 1))
164
+
165
+ attn_mask = (mask_type, nnf.interpolate(mask_tensor.unsqueeze(1).float(), (size, size)).view(mask_tensor.shape[0], size * size))
166
+
167
+ else:
168
+ attn_mask = None
169
+ else:
170
+ attn_mask = None
171
+
172
+ x, aff_per_head = forward_multihead_attention(x, res_block, with_aff=True, attn_mask=attn_mask)
173
+
174
+ if i in extract_layers:
175
+ affinities += [aff_per_head]
176
+
177
+ #if self.n_tokens is not None:
178
+ # activations += [nnf.interpolate(x, inp_size, mode='bilinear', align_corners=True)]
179
+ #else:
180
+ activations += [x]
181
+
182
+ if len(extract_layers) > 0 and i == max(extract_layers) and skip:
183
+ print('early skip')
184
+ break
185
+
186
+ x = x.permute(1, 0, 2) # LND -> NLD
187
+ x = self.model.ln_post(x[:, 0, :])
188
+
189
+ if self.model.proj is not None:
190
+ x = x @ self.model.proj
191
+
192
+ return x, activations, affinities
193
+
194
+ def sample_prompts(self, words, prompt_list=None):
195
+
196
+ prompt_list = prompt_list if prompt_list is not None else self.prompt_list
197
+
198
+ prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
199
+ prompts = [prompt_list[i] for i in prompt_indices]
200
+ return [promt.format(w) for promt, w in zip(prompts, words)]
201
+
202
+ def get_cond_vec(self, conditional, batch_size):
203
+ # compute conditional from a single string
204
+ if conditional is not None and type(conditional) == str:
205
+ cond = self.compute_conditional(conditional)
206
+ cond = cond.repeat(batch_size, 1)
207
+
208
+ # compute conditional from string list/tuple
209
+ elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
210
+ assert len(conditional) == batch_size
211
+ cond = self.compute_conditional(conditional)
212
+
213
+ # use conditional directly
214
+ elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
215
+ cond = conditional
216
+
217
+ # compute conditional from image
218
+ elif conditional is not None and type(conditional) == torch.Tensor:
219
+ with torch.no_grad():
220
+ cond, _, _ = self.visual_forward(conditional)
221
+ else:
222
+ raise ValueError('invalid conditional')
223
+ return cond
224
+
225
+ def compute_conditional(self, conditional):
226
+ import clip
227
+
228
+ dev = next(self.parameters()).device
229
+
230
+ if type(conditional) in {list, tuple}:
231
+ text_tokens = clip.tokenize(conditional).to(dev)
232
+ cond = self.clip_model.encode_text(text_tokens)
233
+ else:
234
+ if conditional in self.precomputed_prompts:
235
+ cond = self.precomputed_prompts[conditional].float().to(dev)
236
+ else:
237
+ text_tokens = clip.tokenize([conditional]).to(dev)
238
+ cond = self.clip_model.encode_text(text_tokens)[0]
239
+
240
+ if self.shift_vector is not None:
241
+ return cond + self.shift_vector
242
+ else:
243
+ return cond
244
+
245
+
246
+ def clip_load_untrained(version):
247
+ assert version == 'ViT-B/16'
248
+ from clip.model import CLIP
249
+ from clip.clip import _MODELS, _download
250
+ model = torch.jit.load(_download(_MODELS['ViT-B/16'])).eval()
251
+ state_dict = model.state_dict()
252
+
253
+ vision_width = state_dict["visual.conv1.weight"].shape[0]
254
+ vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
255
+ vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
256
+ grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
257
+ image_resolution = vision_patch_size * grid_size
258
+ embed_dim = state_dict["text_projection"].shape[1]
259
+ context_length = state_dict["positional_embedding"].shape[0]
260
+ vocab_size = state_dict["token_embedding.weight"].shape[0]
261
+ transformer_width = state_dict["ln_final.weight"].shape[0]
262
+ transformer_heads = transformer_width // 64
263
+ transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
264
+
265
+ return CLIP(embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size,
266
+ context_length, vocab_size, transformer_width, transformer_heads, transformer_layers)
267
+
268
+
269
+ class CLIPDensePredT(CLIPDenseBase):
270
+
271
+ def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
272
+ extra_blocks=0, reduce_cond=None, fix_shift=False,
273
+ learn_trans_conv_only=False, limit_to_clip_only=False, upsample=False,
274
+ add_calibration=False, rev_activations=False, trans_conv=None, n_tokens=None, complex_trans_conv=False):
275
+
276
+ super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
277
+ # device = 'cpu'
278
+
279
+ self.extract_layers = extract_layers
280
+ self.cond_layer = cond_layer
281
+ self.limit_to_clip_only = limit_to_clip_only
282
+ self.process_cond = None
283
+ self.rev_activations = rev_activations
284
+
285
+ depth = len(extract_layers)
286
+
287
+ if add_calibration:
288
+ self.calibration_conds = 1
289
+
290
+ self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
291
+
292
+ self.add_activation1 = True
293
+
294
+ self.version = version
295
+
296
+ self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
297
+
298
+ if fix_shift:
299
+ # self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'clip_text_shift_vector.pth')), requires_grad=False)
300
+ self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'shift_text_to_vis.pth')), requires_grad=False)
301
+ # self.shift_vector = nn.Parameter(-1*torch.load(join(dirname(basename(__file__)), 'shift2.pth')), requires_grad=False)
302
+ else:
303
+ self.shift_vector = None
304
+
305
+ if trans_conv is None:
306
+ trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
307
+ else:
308
+ # explicitly define transposed conv kernel size
309
+ trans_conv_ks = (trans_conv, trans_conv)
310
+
311
+ if not complex_trans_conv:
312
+ self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
313
+ else:
314
+ assert trans_conv_ks[0] == trans_conv_ks[1]
315
+
316
+ tp_kernels = (trans_conv_ks[0] // 4, trans_conv_ks[0] // 4)
317
+
318
+ self.trans_conv = nn.Sequential(
319
+ nn.Conv2d(reduce_dim, reduce_dim, kernel_size=3, padding=1),
320
+ nn.ReLU(),
321
+ nn.ConvTranspose2d(reduce_dim, reduce_dim // 2, kernel_size=tp_kernels[0], stride=tp_kernels[0]),
322
+ nn.ReLU(),
323
+ nn.ConvTranspose2d(reduce_dim // 2, 1, kernel_size=tp_kernels[1], stride=tp_kernels[1]),
324
+ )
325
+
326
+ # self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
327
+
328
+ assert len(self.extract_layers) == depth
329
+
330
+ self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
331
+ self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
332
+ self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
333
+
334
+ # refinement and trans conv
335
+
336
+ if learn_trans_conv_only:
337
+ for p in self.parameters():
338
+ p.requires_grad_(False)
339
+
340
+ for p in self.trans_conv.parameters():
341
+ p.requires_grad_(True)
342
+
343
+ self.prompt_list = get_prompt_list(prompt)
344
+
345
+
346
+ def forward(self, inp_image, conditional=None, return_features=False, mask=None):
347
+
348
+ assert type(return_features) == bool
349
+
350
+ inp_image = inp_image.to(self.model.positional_embedding.device)
351
+
352
+ if mask is not None:
353
+ raise ValueError('mask not supported')
354
+
355
+ # x_inp = normalize(inp_image)
356
+ x_inp = inp_image
357
+
358
+ bs, dev = inp_image.shape[0], x_inp.device
359
+
360
+ cond = self.get_cond_vec(conditional, bs)
361
+
362
+ visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
363
+
364
+ activation1 = activations[0]
365
+ activations = activations[1:]
366
+
367
+ _activations = activations[::-1] if not self.rev_activations else activations
368
+
369
+ a = None
370
+ for i, (activation, block, reduce) in enumerate(zip(_activations, self.blocks, self.reduces)):
371
+
372
+ if a is not None:
373
+ a = reduce(activation) + a
374
+ else:
375
+ a = reduce(activation)
376
+
377
+ if i == self.cond_layer:
378
+ if self.reduce_cond is not None:
379
+ cond = self.reduce_cond(cond)
380
+
381
+ a = self.film_mul(cond) * a + self.film_add(cond)
382
+
383
+ a = block(a)
384
+
385
+ for block in self.extra_blocks:
386
+ a = a + block(a)
387
+
388
+ a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
389
+
390
+ size = int(math.sqrt(a.shape[2]))
391
+
392
+ a = a.view(bs, a.shape[1], size, size)
393
+
394
+ a = self.trans_conv(a)
395
+
396
+ if self.n_tokens is not None:
397
+ a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear', align_corners=True)
398
+
399
+ if self.upsample_proj is not None:
400
+ a = self.upsample_proj(a)
401
+ a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
402
+
403
+ if return_features:
404
+ return a, visual_q, cond, [activation1] + activations
405
+ else:
406
+ return a,
407
+
408
+
409
+
410
+ class CLIPDensePredTMasked(CLIPDensePredT):
411
+
412
+ def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4,
413
+ prompt='fixed', extra_blocks=0, reduce_cond=None, fix_shift=False, learn_trans_conv_only=False,
414
+ refine=None, limit_to_clip_only=False, upsample=False, add_calibration=False, n_tokens=None):
415
+
416
+ super().__init__(version=version, extract_layers=extract_layers, cond_layer=cond_layer, reduce_dim=reduce_dim,
417
+ n_heads=n_heads, prompt=prompt, extra_blocks=extra_blocks, reduce_cond=reduce_cond,
418
+ fix_shift=fix_shift, learn_trans_conv_only=learn_trans_conv_only,
419
+ limit_to_clip_only=limit_to_clip_only, upsample=upsample, add_calibration=add_calibration,
420
+ n_tokens=n_tokens)
421
+
422
+ def visual_forward_masked(self, img_s, seg_s):
423
+ return super().visual_forward(img_s, mask=('all', 'cls_token', seg_s))
424
+
425
+ def forward(self, img_q, cond_or_img_s, seg_s=None, return_features=False):
426
+
427
+ if seg_s is None:
428
+ cond = cond_or_img_s
429
+ else:
430
+ img_s = cond_or_img_s
431
+
432
+ with torch.no_grad():
433
+ cond, _, _ = self.visual_forward_masked(img_s, seg_s)
434
+
435
+ return super().forward(img_q, cond, return_features=return_features)
436
+
437
+
438
+
439
+ class CLIPDenseBaseline(CLIPDenseBase):
440
+
441
+ def __init__(self, version='ViT-B/32', cond_layer=0,
442
+ extract_layer=9, reduce_dim=128, reduce2_dim=None, prompt='fixed',
443
+ reduce_cond=None, limit_to_clip_only=False, n_tokens=None):
444
+
445
+ super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
446
+ device = 'cpu'
447
+
448
+ # self.cond_layer = cond_layer
449
+ self.extract_layer = extract_layer
450
+ self.limit_to_clip_only = limit_to_clip_only
451
+ self.shift_vector = None
452
+
453
+ self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
454
+
455
+ assert reduce2_dim is not None
456
+
457
+ self.reduce2 = nn.Sequential(
458
+ nn.Linear(reduce_dim, reduce2_dim),
459
+ nn.ReLU(),
460
+ nn.Linear(reduce2_dim, reduce_dim)
461
+ )
462
+
463
+ trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
464
+ self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
465
+
466
+
467
+ def forward(self, inp_image, conditional=None, return_features=False):
468
+
469
+ inp_image = inp_image.to(self.model.positional_embedding.device)
470
+
471
+ # x_inp = normalize(inp_image)
472
+ x_inp = inp_image
473
+
474
+ bs, dev = inp_image.shape[0], x_inp.device
475
+
476
+ cond = self.get_cond_vec(conditional, bs)
477
+
478
+ visual_q, activations, affinities = self.visual_forward(x_inp, extract_layers=[self.extract_layer])
479
+
480
+ a = activations[0]
481
+ a = self.reduce(a)
482
+ a = self.film_mul(cond) * a + self.film_add(cond)
483
+
484
+ if self.reduce2 is not None:
485
+ a = self.reduce2(a)
486
+
487
+ # the original model would execute a transformer block here
488
+
489
+ a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
490
+
491
+ size = int(math.sqrt(a.shape[2]))
492
+
493
+ a = a.view(bs, a.shape[1], size, size)
494
+ a = self.trans_conv(a)
495
+
496
+ if return_features:
497
+ return a, visual_q, cond, activations
498
+ else:
499
+ return a,
500
+
501
+
502
+ class CLIPSegMultiLabel(nn.Module):
503
+
504
+ def __init__(self, model) -> None:
505
+ super().__init__()
506
+
507
+ from third_party.JoEm.data_loader import get_seen_idx, get_unseen_idx, VOC
508
+
509
+ self.pascal_classes = VOC
510
+
511
+ from clip.clipseg import CLIPDensePredT
512
+ from general_utils import load_model
513
+ # self.clipseg = load_model('rd64-vit16-neg0.2-phrasecut', strict=False)
514
+ self.clipseg = load_model(model, strict=False)
515
+
516
+ self.clipseg.eval()
517
+
518
+ def forward(self, x):
519
+
520
+ bs = x.shape[0]
521
+ out = torch.ones(21, bs, 352, 352).to(x.device) * -10
522
+
523
+ for class_id, class_name in enumerate(self.pascal_classes):
524
+
525
+ fac = 3 if class_name == 'background' else 1
526
+
527
+ with torch.no_grad():
528
+ pred = torch.sigmoid(self.clipseg(x, class_name)[0][:,0]) * fac
529
+
530
+ out[class_id] += pred
531
+
532
+
533
+ out = out.permute(1, 0, 2, 3)
534
+
535
+ return out
536
+
537
+ # construct output tensor
538
+
clip/model.py ADDED
@@ -0,0 +1,436 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import OrderedDict
2
+ from typing import Tuple, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+ import torch.nn.functional as F
7
+ from torch import nn
8
+
9
+
10
+ class Bottleneck(nn.Module):
11
+ expansion = 4
12
+
13
+ def __init__(self, inplanes, planes, stride=1):
14
+ super().__init__()
15
+
16
+ # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
17
+ self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
18
+ self.bn1 = nn.BatchNorm2d(planes)
19
+ self.relu1 = nn.ReLU(inplace=True)
20
+
21
+ self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
22
+ self.bn2 = nn.BatchNorm2d(planes)
23
+ self.relu2 = nn.ReLU(inplace=True)
24
+
25
+ self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
26
+
27
+ self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
28
+ self.bn3 = nn.BatchNorm2d(planes * self.expansion)
29
+ self.relu3 = nn.ReLU(inplace=True)
30
+
31
+ self.downsample = None
32
+ self.stride = stride
33
+
34
+ if stride > 1 or inplanes != planes * Bottleneck.expansion:
35
+ # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
36
+ self.downsample = nn.Sequential(OrderedDict([
37
+ ("-1", nn.AvgPool2d(stride)),
38
+ ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
39
+ ("1", nn.BatchNorm2d(planes * self.expansion))
40
+ ]))
41
+
42
+ def forward(self, x: torch.Tensor):
43
+ identity = x
44
+
45
+ out = self.relu1(self.bn1(self.conv1(x)))
46
+ out = self.relu2(self.bn2(self.conv2(out)))
47
+ out = self.avgpool(out)
48
+ out = self.bn3(self.conv3(out))
49
+
50
+ if self.downsample is not None:
51
+ identity = self.downsample(x)
52
+
53
+ out += identity
54
+ out = self.relu3(out)
55
+ return out
56
+
57
+
58
+ class AttentionPool2d(nn.Module):
59
+ def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
60
+ super().__init__()
61
+ self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
62
+ self.k_proj = nn.Linear(embed_dim, embed_dim)
63
+ self.q_proj = nn.Linear(embed_dim, embed_dim)
64
+ self.v_proj = nn.Linear(embed_dim, embed_dim)
65
+ self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
66
+ self.num_heads = num_heads
67
+
68
+ def forward(self, x):
69
+ x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
70
+ x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
71
+ x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
72
+ x, _ = F.multi_head_attention_forward(
73
+ query=x[:1], key=x, value=x,
74
+ embed_dim_to_check=x.shape[-1],
75
+ num_heads=self.num_heads,
76
+ q_proj_weight=self.q_proj.weight,
77
+ k_proj_weight=self.k_proj.weight,
78
+ v_proj_weight=self.v_proj.weight,
79
+ in_proj_weight=None,
80
+ in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
81
+ bias_k=None,
82
+ bias_v=None,
83
+ add_zero_attn=False,
84
+ dropout_p=0,
85
+ out_proj_weight=self.c_proj.weight,
86
+ out_proj_bias=self.c_proj.bias,
87
+ use_separate_proj_weight=True,
88
+ training=self.training,
89
+ need_weights=False
90
+ )
91
+ return x.squeeze(0)
92
+
93
+
94
+ class ModifiedResNet(nn.Module):
95
+ """
96
+ A ResNet class that is similar to torchvision's but contains the following changes:
97
+ - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
98
+ - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
99
+ - The final pooling layer is a QKV attention instead of an average pool
100
+ """
101
+
102
+ def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
103
+ super().__init__()
104
+ self.output_dim = output_dim
105
+ self.input_resolution = input_resolution
106
+
107
+ # the 3-layer stem
108
+ self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
109
+ self.bn1 = nn.BatchNorm2d(width // 2)
110
+ self.relu1 = nn.ReLU(inplace=True)
111
+ self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
112
+ self.bn2 = nn.BatchNorm2d(width // 2)
113
+ self.relu2 = nn.ReLU(inplace=True)
114
+ self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
115
+ self.bn3 = nn.BatchNorm2d(width)
116
+ self.relu3 = nn.ReLU(inplace=True)
117
+ self.avgpool = nn.AvgPool2d(2)
118
+
119
+ # residual layers
120
+ self._inplanes = width # this is a *mutable* variable used during construction
121
+ self.layer1 = self._make_layer(width, layers[0])
122
+ self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
123
+ self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
124
+ self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
125
+
126
+ embed_dim = width * 32 # the ResNet feature dimension
127
+ self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
128
+
129
+ def _make_layer(self, planes, blocks, stride=1):
130
+ layers = [Bottleneck(self._inplanes, planes, stride)]
131
+
132
+ self._inplanes = planes * Bottleneck.expansion
133
+ for _ in range(1, blocks):
134
+ layers.append(Bottleneck(self._inplanes, planes))
135
+
136
+ return nn.Sequential(*layers)
137
+
138
+ def forward(self, x):
139
+ def stem(x):
140
+ x = self.relu1(self.bn1(self.conv1(x)))
141
+ x = self.relu2(self.bn2(self.conv2(x)))
142
+ x = self.relu3(self.bn3(self.conv3(x)))
143
+ x = self.avgpool(x)
144
+ return x
145
+
146
+ x = x.type(self.conv1.weight.dtype)
147
+ x = stem(x)
148
+ x = self.layer1(x)
149
+ x = self.layer2(x)
150
+ x = self.layer3(x)
151
+ x = self.layer4(x)
152
+ x = self.attnpool(x)
153
+
154
+ return x
155
+
156
+
157
+ class LayerNorm(nn.LayerNorm):
158
+ """Subclass torch's LayerNorm to handle fp16."""
159
+
160
+ def forward(self, x: torch.Tensor):
161
+ orig_type = x.dtype
162
+ ret = super().forward(x.type(torch.float32))
163
+ return ret.type(orig_type)
164
+
165
+
166
+ class QuickGELU(nn.Module):
167
+ def forward(self, x: torch.Tensor):
168
+ return x * torch.sigmoid(1.702 * x)
169
+
170
+
171
+ class ResidualAttentionBlock(nn.Module):
172
+ def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
173
+ super().__init__()
174
+
175
+ self.attn = nn.MultiheadAttention(d_model, n_head)
176
+ self.ln_1 = LayerNorm(d_model)
177
+ self.mlp = nn.Sequential(OrderedDict([
178
+ ("c_fc", nn.Linear(d_model, d_model * 4)),
179
+ ("gelu", QuickGELU()),
180
+ ("c_proj", nn.Linear(d_model * 4, d_model))
181
+ ]))
182
+ self.ln_2 = LayerNorm(d_model)
183
+ self.attn_mask = attn_mask
184
+
185
+ def attention(self, x: torch.Tensor):
186
+ self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
187
+ return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
188
+
189
+ def forward(self, x: torch.Tensor):
190
+ x = x + self.attention(self.ln_1(x))
191
+ x = x + self.mlp(self.ln_2(x))
192
+ return x
193
+
194
+
195
+ class Transformer(nn.Module):
196
+ def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
197
+ super().__init__()
198
+ self.width = width
199
+ self.layers = layers
200
+ self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
201
+
202
+ def forward(self, x: torch.Tensor):
203
+ return self.resblocks(x)
204
+
205
+
206
+ class VisionTransformer(nn.Module):
207
+ def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
208
+ super().__init__()
209
+ self.input_resolution = input_resolution
210
+ self.output_dim = output_dim
211
+ self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
212
+
213
+ scale = width ** -0.5
214
+ self.class_embedding = nn.Parameter(scale * torch.randn(width))
215
+ self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
216
+ self.ln_pre = LayerNorm(width)
217
+
218
+ self.transformer = Transformer(width, layers, heads)
219
+
220
+ self.ln_post = LayerNorm(width)
221
+ self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
222
+
223
+ def forward(self, x: torch.Tensor):
224
+ x = self.conv1(x) # shape = [*, width, grid, grid]
225
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
226
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
227
+ x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
228
+ x = x + self.positional_embedding.to(x.dtype)
229
+ x = self.ln_pre(x)
230
+
231
+ x = x.permute(1, 0, 2) # NLD -> LND
232
+ x = self.transformer(x)
233
+ x = x.permute(1, 0, 2) # LND -> NLD
234
+
235
+ x = self.ln_post(x[:, 0, :])
236
+
237
+ if self.proj is not None:
238
+ x = x @ self.proj
239
+
240
+ return x
241
+
242
+
243
+ class CLIP(nn.Module):
244
+ def __init__(self,
245
+ embed_dim: int,
246
+ # vision
247
+ image_resolution: int,
248
+ vision_layers: Union[Tuple[int, int, int, int], int],
249
+ vision_width: int,
250
+ vision_patch_size: int,
251
+ # text
252
+ context_length: int,
253
+ vocab_size: int,
254
+ transformer_width: int,
255
+ transformer_heads: int,
256
+ transformer_layers: int
257
+ ):
258
+ super().__init__()
259
+
260
+ self.context_length = context_length
261
+
262
+ if isinstance(vision_layers, (tuple, list)):
263
+ vision_heads = vision_width * 32 // 64
264
+ self.visual = ModifiedResNet(
265
+ layers=vision_layers,
266
+ output_dim=embed_dim,
267
+ heads=vision_heads,
268
+ input_resolution=image_resolution,
269
+ width=vision_width
270
+ )
271
+ else:
272
+ vision_heads = vision_width // 64
273
+ self.visual = VisionTransformer(
274
+ input_resolution=image_resolution,
275
+ patch_size=vision_patch_size,
276
+ width=vision_width,
277
+ layers=vision_layers,
278
+ heads=vision_heads,
279
+ output_dim=embed_dim
280
+ )
281
+
282
+ self.transformer = Transformer(
283
+ width=transformer_width,
284
+ layers=transformer_layers,
285
+ heads=transformer_heads,
286
+ attn_mask=self.build_attention_mask()
287
+ )
288
+
289
+ self.vocab_size = vocab_size
290
+ self.token_embedding = nn.Embedding(vocab_size, transformer_width)
291
+ self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
292
+ self.ln_final = LayerNorm(transformer_width)
293
+
294
+ self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
295
+ self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
296
+
297
+ self.initialize_parameters()
298
+
299
+ def initialize_parameters(self):
300
+ nn.init.normal_(self.token_embedding.weight, std=0.02)
301
+ nn.init.normal_(self.positional_embedding, std=0.01)
302
+
303
+ if isinstance(self.visual, ModifiedResNet):
304
+ if self.visual.attnpool is not None:
305
+ std = self.visual.attnpool.c_proj.in_features ** -0.5
306
+ nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
307
+ nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
308
+ nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
309
+ nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
310
+
311
+ for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
312
+ for name, param in resnet_block.named_parameters():
313
+ if name.endswith("bn3.weight"):
314
+ nn.init.zeros_(param)
315
+
316
+ proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
317
+ attn_std = self.transformer.width ** -0.5
318
+ fc_std = (2 * self.transformer.width) ** -0.5
319
+ for block in self.transformer.resblocks:
320
+ nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
321
+ nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
322
+ nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
323
+ nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
324
+
325
+ if self.text_projection is not None:
326
+ nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
327
+
328
+ def build_attention_mask(self):
329
+ # lazily create causal attention mask, with full attention between the vision tokens
330
+ # pytorch uses additive attention mask; fill with -inf
331
+ mask = torch.empty(self.context_length, self.context_length)
332
+ mask.fill_(float("-inf"))
333
+ mask.triu_(1) # zero out the lower diagonal
334
+ return mask
335
+
336
+ @property
337
+ def dtype(self):
338
+ return self.visual.conv1.weight.dtype
339
+
340
+ def encode_image(self, image):
341
+ return self.visual(image.type(self.dtype))
342
+
343
+ def encode_text(self, text):
344
+ x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
345
+
346
+ x = x + self.positional_embedding.type(self.dtype)
347
+ x = x.permute(1, 0, 2) # NLD -> LND
348
+ x = self.transformer(x)
349
+ x = x.permute(1, 0, 2) # LND -> NLD
350
+ x = self.ln_final(x).type(self.dtype)
351
+
352
+ # x.shape = [batch_size, n_ctx, transformer.width]
353
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
354
+ x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
355
+
356
+ return x
357
+
358
+ def forward(self, image, text):
359
+ image_features = self.encode_image(image)
360
+ text_features = self.encode_text(text)
361
+
362
+ # normalized features
363
+ image_features = image_features / image_features.norm(dim=1, keepdim=True)
364
+ text_features = text_features / text_features.norm(dim=1, keepdim=True)
365
+
366
+ # cosine similarity as logits
367
+ logit_scale = self.logit_scale.exp()
368
+ logits_per_image = logit_scale * image_features @ text_features.t()
369
+ logits_per_text = logits_per_image.t()
370
+
371
+ # shape = [global_batch_size, global_batch_size]
372
+ return logits_per_image, logits_per_text
373
+
374
+
375
+ def convert_weights(model: nn.Module):
376
+ """Convert applicable model parameters to fp16"""
377
+
378
+ def _convert_weights_to_fp16(l):
379
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
380
+ l.weight.data = l.weight.data.half()
381
+ if l.bias is not None:
382
+ l.bias.data = l.bias.data.half()
383
+
384
+ if isinstance(l, nn.MultiheadAttention):
385
+ for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
386
+ tensor = getattr(l, attr)
387
+ if tensor is not None:
388
+ tensor.data = tensor.data.half()
389
+
390
+ for name in ["text_projection", "proj"]:
391
+ if hasattr(l, name):
392
+ attr = getattr(l, name)
393
+ if attr is not None:
394
+ attr.data = attr.data.half()
395
+
396
+ model.apply(_convert_weights_to_fp16)
397
+
398
+
399
+ def build_model(state_dict: dict):
400
+ vit = "visual.proj" in state_dict
401
+
402
+ if vit:
403
+ vision_width = state_dict["visual.conv1.weight"].shape[0]
404
+ vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
405
+ vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
406
+ grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
407
+ image_resolution = vision_patch_size * grid_size
408
+ else:
409
+ counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
410
+ vision_layers = tuple(counts)
411
+ vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
412
+ output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
413
+ vision_patch_size = None
414
+ assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
415
+ image_resolution = output_width * 32
416
+
417
+ embed_dim = state_dict["text_projection"].shape[1]
418
+ context_length = state_dict["positional_embedding"].shape[0]
419
+ vocab_size = state_dict["token_embedding.weight"].shape[0]
420
+ transformer_width = state_dict["ln_final.weight"].shape[0]
421
+ transformer_heads = transformer_width // 64
422
+ transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")))
423
+
424
+ model = CLIP(
425
+ embed_dim,
426
+ image_resolution, vision_layers, vision_width, vision_patch_size,
427
+ context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
428
+ )
429
+
430
+ for key in ["input_resolution", "context_length", "vocab_size"]:
431
+ if key in state_dict:
432
+ del state_dict[key]
433
+
434
+ convert_weights(model)
435
+ model.load_state_dict(state_dict)
436
+ return model.eval()
clip/simple_tokenizer.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gzip
2
+ import html
3
+ import os
4
+ from functools import lru_cache
5
+
6
+ import ftfy
7
+ import regex as re
8
+
9
+
10
+ @lru_cache()
11
+ def default_bpe():
12
+ return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
13
+
14
+
15
+ @lru_cache()
16
+ def bytes_to_unicode():
17
+ """
18
+ Returns list of utf-8 byte and a corresponding list of unicode strings.
19
+ The reversible bpe codes work on unicode strings.
20
+ This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
21
+ When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
22
+ This is a signficant percentage of your normal, say, 32K bpe vocab.
23
+ To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
24
+ And avoids mapping to whitespace/control characters the bpe code barfs on.
25
+ """
26
+ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
27
+ cs = bs[:]
28
+ n = 0
29
+ for b in range(2**8):
30
+ if b not in bs:
31
+ bs.append(b)
32
+ cs.append(2**8+n)
33
+ n += 1
34
+ cs = [chr(n) for n in cs]
35
+ return dict(zip(bs, cs))
36
+
37
+
38
+ def get_pairs(word):
39
+ """Return set of symbol pairs in a word.
40
+ Word is represented as tuple of symbols (symbols being variable-length strings).
41
+ """
42
+ pairs = set()
43
+ prev_char = word[0]
44
+ for char in word[1:]:
45
+ pairs.add((prev_char, char))
46
+ prev_char = char
47
+ return pairs
48
+
49
+
50
+ def basic_clean(text):
51
+ text = ftfy.fix_text(text)
52
+ text = html.unescape(html.unescape(text))
53
+ return text.strip()
54
+
55
+
56
+ def whitespace_clean(text):
57
+ text = re.sub(r'\s+', ' ', text)
58
+ text = text.strip()
59
+ return text
60
+
61
+
62
+ class SimpleTokenizer(object):
63
+ def __init__(self, bpe_path: str = default_bpe()):
64
+ self.byte_encoder = bytes_to_unicode()
65
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
66
+ merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
67
+ merges = merges[1:49152-256-2+1]
68
+ merges = [tuple(merge.split()) for merge in merges]
69
+ vocab = list(bytes_to_unicode().values())
70
+ vocab = vocab + [v+'</w>' for v in vocab]
71
+ for merge in merges:
72
+ vocab.append(''.join(merge))
73
+ vocab.extend(['<|startoftext|>', '<|endoftext|>'])
74
+ self.encoder = dict(zip(vocab, range(len(vocab))))
75
+ self.decoder = {v: k for k, v in self.encoder.items()}
76
+ self.bpe_ranks = dict(zip(merges, range(len(merges))))
77
+ self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
78
+ self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
79
+
80
+ def bpe(self, token):
81
+ if token in self.cache:
82
+ return self.cache[token]
83
+ word = tuple(token[:-1]) + ( token[-1] + '</w>',)
84
+ pairs = get_pairs(word)
85
+
86
+ if not pairs:
87
+ return token+'</w>'
88
+
89
+ while True:
90
+ bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
91
+ if bigram not in self.bpe_ranks:
92
+ break
93
+ first, second = bigram
94
+ new_word = []
95
+ i = 0
96
+ while i < len(word):
97
+ try:
98
+ j = word.index(first, i)
99
+ new_word.extend(word[i:j])
100
+ i = j
101
+ except:
102
+ new_word.extend(word[i:])
103
+ break
104
+
105
+ if word[i] == first and i < len(word)-1 and word[i+1] == second:
106
+ new_word.append(first+second)
107
+ i += 2
108
+ else:
109
+ new_word.append(word[i])
110
+ i += 1
111
+ new_word = tuple(new_word)
112
+ word = new_word
113
+ if len(word) == 1:
114
+ break
115
+ else:
116
+ pairs = get_pairs(word)
117
+ word = ' '.join(word)
118
+ self.cache[token] = word
119
+ return word
120
+
121
+ def encode(self, text):
122
+ bpe_tokens = []
123
+ text = whitespace_clean(basic_clean(text)).lower()
124
+ for token in re.findall(self.pat, text):
125
+ token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
126
+ bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
127
+ return bpe_tokens
128
+
129
+ def decode(self, tokens):
130
+ text = ''.join([self.decoder[token] for token in tokens])
131
+ text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
132
+ return text
clip/vitseg.py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from posixpath import basename, dirname, join
3
+ # import clip
4
+ from clip.model import convert_weights
5
+ import torch
6
+ import json
7
+ from torch import nn
8
+ from torch.nn import functional as nnf
9
+ from torch.nn.modules import activation
10
+ from torch.nn.modules.activation import ReLU
11
+ from torchvision import transforms
12
+
13
+ normalize = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
14
+
15
+ from torchvision.models import ResNet
16
+
17
+
18
+ def process_prompts(conditional, prompt_list, conditional_map):
19
+ # DEPRECATED
20
+
21
+ # randomly sample a synonym
22
+ words = [conditional_map[int(i)] for i in conditional]
23
+ words = [syns[torch.multinomial(torch.ones(len(syns)), 1, replacement=True).item()] for syns in words]
24
+ words = [w.replace('_', ' ') for w in words]
25
+
26
+ if prompt_list is not None:
27
+ prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
28
+ prompts = [prompt_list[i] for i in prompt_indices]
29
+ else:
30
+ prompts = ['a photo of {}'] * (len(words))
31
+
32
+ return [promt.format(w) for promt, w in zip(prompts, words)]
33
+
34
+
35
+ class VITDenseBase(nn.Module):
36
+
37
+ def rescaled_pos_emb(self, new_size):
38
+ assert len(new_size) == 2
39
+
40
+ a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
41
+ b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
42
+ return torch.cat([self.model.positional_embedding[:1], b])
43
+
44
+ def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
45
+
46
+ with torch.no_grad():
47
+
48
+ x_inp = nnf.interpolate(x_inp, (384, 384))
49
+
50
+ x = self.model.patch_embed(x_inp)
51
+ cls_token = self.model.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks
52
+ if self.model.dist_token is None:
53
+ x = torch.cat((cls_token, x), dim=1)
54
+ else:
55
+ x = torch.cat((cls_token, self.model.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
56
+ x = self.model.pos_drop(x + self.model.pos_embed)
57
+
58
+ activations = []
59
+ for i, block in enumerate(self.model.blocks):
60
+ x = block(x)
61
+
62
+ if i in extract_layers:
63
+ # permute to be compatible with CLIP
64
+ activations += [x.permute(1,0,2)]
65
+
66
+ x = self.model.norm(x)
67
+ x = self.model.head(self.model.pre_logits(x[:, 0]))
68
+
69
+ # again for CLIP compatibility
70
+ # x = x.permute(1, 0, 2)
71
+
72
+ return x, activations, None
73
+
74
+ def sample_prompts(self, words, prompt_list=None):
75
+
76
+ prompt_list = prompt_list if prompt_list is not None else self.prompt_list
77
+
78
+ prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
79
+ prompts = [prompt_list[i] for i in prompt_indices]
80
+ return [promt.format(w) for promt, w in zip(prompts, words)]
81
+
82
+ def get_cond_vec(self, conditional, batch_size):
83
+ # compute conditional from a single string
84
+ if conditional is not None and type(conditional) == str:
85
+ cond = self.compute_conditional(conditional)
86
+ cond = cond.repeat(batch_size, 1)
87
+
88
+ # compute conditional from string list/tuple
89
+ elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
90
+ assert len(conditional) == batch_size
91
+ cond = self.compute_conditional(conditional)
92
+
93
+ # use conditional directly
94
+ elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
95
+ cond = conditional
96
+
97
+ # compute conditional from image
98
+ elif conditional is not None and type(conditional) == torch.Tensor:
99
+ with torch.no_grad():
100
+ cond, _, _ = self.visual_forward(conditional)
101
+ else:
102
+ raise ValueError('invalid conditional')
103
+ return cond
104
+
105
+ def compute_conditional(self, conditional):
106
+ import clip
107
+
108
+ dev = next(self.parameters()).device
109
+
110
+ if type(conditional) in {list, tuple}:
111
+ text_tokens = clip.tokenize(conditional).to(dev)
112
+ cond = self.clip_model.encode_text(text_tokens)
113
+ else:
114
+ if conditional in self.precomputed_prompts:
115
+ cond = self.precomputed_prompts[conditional].float().to(dev)
116
+ else:
117
+ text_tokens = clip.tokenize([conditional]).to(dev)
118
+ cond = self.clip_model.encode_text(text_tokens)[0]
119
+
120
+ return cond
121
+
122
+
123
+ class VITDensePredT(VITDenseBase):
124
+
125
+ def __init__(self, extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
126
+ depth=3, extra_blocks=0, reduce_cond=None, fix_shift=False,
127
+ learn_trans_conv_only=False, refine=None, limit_to_clip_only=False, upsample=False,
128
+ add_calibration=False, process_cond=None, not_pretrained=False):
129
+ super().__init__()
130
+ # device = 'cpu'
131
+
132
+ self.extract_layers = extract_layers
133
+ self.cond_layer = cond_layer
134
+ self.limit_to_clip_only = limit_to_clip_only
135
+ self.process_cond = None
136
+
137
+ if add_calibration:
138
+ self.calibration_conds = 1
139
+
140
+ self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
141
+
142
+ self.add_activation1 = True
143
+
144
+ import timm
145
+ self.model = timm.create_model('vit_base_patch16_384', pretrained=True)
146
+ self.model.head = nn.Linear(768, 512 if reduce_cond is None else reduce_cond)
147
+
148
+ for p in self.model.parameters():
149
+ p.requires_grad_(False)
150
+
151
+ import clip
152
+ self.clip_model, _ = clip.load('ViT-B/16', device='cpu', jit=False)
153
+ # del self.clip_model.visual
154
+
155
+
156
+ self.token_shape = (14, 14)
157
+
158
+ # conditional
159
+ if reduce_cond is not None:
160
+ self.reduce_cond = nn.Linear(512, reduce_cond)
161
+ for p in self.reduce_cond.parameters():
162
+ p.requires_grad_(False)
163
+ else:
164
+ self.reduce_cond = None
165
+
166
+ # self.film = AVAILABLE_BLOCKS['film'](512, 128)
167
+ self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
168
+ self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
169
+
170
+ # DEPRECATED
171
+ # self.conditional_map = {c['id']: c['synonyms'] for c in json.load(open(cond_map))}
172
+
173
+ assert len(self.extract_layers) == depth
174
+
175
+ self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
176
+ self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
177
+ self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
178
+
179
+ trans_conv_ks = (16, 16)
180
+ self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
181
+
182
+ # refinement and trans conv
183
+
184
+ if learn_trans_conv_only:
185
+ for p in self.parameters():
186
+ p.requires_grad_(False)
187
+
188
+ for p in self.trans_conv.parameters():
189
+ p.requires_grad_(True)
190
+
191
+ if prompt == 'fixed':
192
+ self.prompt_list = ['a photo of a {}.']
193
+ elif prompt == 'shuffle':
194
+ self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
195
+ elif prompt == 'shuffle+':
196
+ self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
197
+ 'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
198
+ 'a bad photo of a {}.', 'a photo of the {}.']
199
+ elif prompt == 'shuffle_clip':
200
+ from models.clip_prompts import imagenet_templates
201
+ self.prompt_list = imagenet_templates
202
+
203
+ if process_cond is not None:
204
+ if process_cond == 'clamp' or process_cond[0] == 'clamp':
205
+
206
+ val = process_cond[1] if type(process_cond) in {list, tuple} else 0.2
207
+
208
+ def clamp_vec(x):
209
+ return torch.clamp(x, -val, val)
210
+
211
+ self.process_cond = clamp_vec
212
+
213
+ elif process_cond.endswith('.pth'):
214
+
215
+ shift = torch.load(process_cond)
216
+ def add_shift(x):
217
+ return x + shift.to(x.device)
218
+
219
+ self.process_cond = add_shift
220
+
221
+ import pickle
222
+ precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
223
+ self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
224
+
225
+
226
+ def forward(self, inp_image, conditional=None, return_features=False, mask=None):
227
+
228
+ assert type(return_features) == bool
229
+
230
+ # inp_image = inp_image.to(self.model.positional_embedding.device)
231
+
232
+ if mask is not None:
233
+ raise ValueError('mask not supported')
234
+
235
+ # x_inp = normalize(inp_image)
236
+ x_inp = inp_image
237
+
238
+ bs, dev = inp_image.shape[0], x_inp.device
239
+
240
+ inp_image_size = inp_image.shape[2:]
241
+
242
+ cond = self.get_cond_vec(conditional, bs)
243
+
244
+ visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
245
+
246
+ activation1 = activations[0]
247
+ activations = activations[1:]
248
+
249
+ a = None
250
+ for i, (activation, block, reduce) in enumerate(zip(activations[::-1], self.blocks, self.reduces)):
251
+
252
+ if a is not None:
253
+ a = reduce(activation) + a
254
+ else:
255
+ a = reduce(activation)
256
+
257
+ if i == self.cond_layer:
258
+ if self.reduce_cond is not None:
259
+ cond = self.reduce_cond(cond)
260
+
261
+ a = self.film_mul(cond) * a + self.film_add(cond)
262
+
263
+ a = block(a)
264
+
265
+ for block in self.extra_blocks:
266
+ a = a + block(a)
267
+
268
+ a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
269
+
270
+ size = int(math.sqrt(a.shape[2]))
271
+
272
+ a = a.view(bs, a.shape[1], size, size)
273
+
274
+ if self.trans_conv is not None:
275
+ a = self.trans_conv(a)
276
+
277
+ if self.upsample_proj is not None:
278
+ a = self.upsample_proj(a)
279
+ a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
280
+
281
+ a = nnf.interpolate(a, inp_image_size)
282
+
283
+ if return_features:
284
+ return a, visual_q, cond, [activation1] + activations
285
+ else:
286
+ return a,
config.yaml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ clear_output: true
2
+ force_cpu: false
3
+ live_cam_start_active: false
4
+ max_threads: 3
5
+ memory_limit: 0
6
+ output_image_format: png
7
+ output_template: '{file}_{time}'
8
+ output_video_codec: libx264
9
+ output_video_format: mp4
10
+ provider: cuda
11
+ selected_theme: Default
12
+ server_name: ''
13
+ server_port: 0
14
+ server_share: true
15
+ video_quality: 14
docs/screenshot.png ADDED

Git LFS Details

  • SHA256: a86df433a470c2b123dbcc4b3e93b7ba00f261a862e5a5b8c747764dc5d6c147
  • Pointer size: 132 Bytes
  • Size of remote file: 3.55 MB
installer/installer.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import os
4
+ import shutil
5
+ import site
6
+ import subprocess
7
+ import sys
8
+
9
+
10
+ script_dir = os.getcwd()
11
+
12
+
13
+ def run_cmd(cmd, capture_output=False, env=None):
14
+ # Run shell commands
15
+ return subprocess.run(cmd, shell=True, capture_output=capture_output, env=env)
16
+
17
+
18
+ def check_env():
19
+ # If we have access to conda, we are probably in an environment
20
+ conda_not_exist = run_cmd("conda", capture_output=True).returncode
21
+ if conda_not_exist:
22
+ print("Conda is not installed. Exiting...")
23
+ sys.exit()
24
+
25
+ # Ensure this is a new environment and not the base environment
26
+ if os.environ["CONDA_DEFAULT_ENV"] == "base":
27
+ print("Create an environment for this project and activate it. Exiting...")
28
+ sys.exit()
29
+
30
+
31
+ def install_dependencies():
32
+ # Install Git and clone repo
33
+ run_cmd("conda install -y -k git")
34
+ run_cmd("git clone https://github.com/C0untFloyd/roop-unleashed.git")
35
+ run_cmd("git checkout 8ee085322158c4eeb0cd0126a49949f1acf0f7df")
36
+ # Install the webui dependencies
37
+ update_dependencies()
38
+
39
+
40
+ def update_dependencies():
41
+ global MY_PATH
42
+
43
+ os.chdir(MY_PATH)
44
+ # do a hard reset for to update even if there are local changes
45
+ run_cmd("git fetch --all")
46
+ run_cmd("git reset --hard origin/main")
47
+ run_cmd("git pull")
48
+ # Installs/Updates dependencies from all requirements.txt
49
+ run_cmd("python -m pip install -r requirements.txt")
50
+
51
+
52
+ def start_app():
53
+ global MY_PATH
54
+
55
+ os.chdir(MY_PATH)
56
+ # forward commandline arguments
57
+ sys.argv.pop(0)
58
+ args = ' '.join(sys.argv)
59
+ print("Launching App")
60
+ run_cmd(f'python run.py {args}')
61
+
62
+
63
+ if __name__ == "__main__":
64
+ global MY_PATH
65
+
66
+ MY_PATH = "roop-unleashed"
67
+
68
+
69
+ # Verifies we are in a conda environment
70
+ check_env()
71
+
72
+ # If webui has already been installed, skip and run
73
+ if not os.path.exists(MY_PATH):
74
+ install_dependencies()
75
+ else:
76
+ # moved update from batch to here, because of batch limitations
77
+ updatechoice = input("Check for Updates? [y/n]").lower()
78
+ if updatechoice == "y":
79
+ update_dependencies()
80
+
81
+ # Run the model with webui
82
+ os.chdir(script_dir)
83
+ start_app()
installer/windows_run.bat ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ @echo off
2
+ REM No CLI arguments supported anymore
3
+ set COMMANDLINE_ARGS=
4
+
5
+ cd /D "%~dp0"
6
+
7
+ echo "%CD%"| findstr /C:" " >nul && echo This script relies on Miniconda which can not be silently installed under a path with spaces. && goto end
8
+
9
+ set PATH=%PATH%;%SystemRoot%\system32
10
+
11
+ @rem config
12
+ set INSTALL_DIR=%cd%\installer_files
13
+ set CONDA_ROOT_PREFIX=%cd%\installer_files\conda
14
+ set INSTALL_ENV_DIR=%cd%\installer_files\env
15
+ set MINICONDA_DOWNLOAD_URL=https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe
16
+ set FFMPEG_DOWNLOAD_URL=https://github.com/GyanD/codexffmpeg/releases/download/2023-06-21-git-1bcb8a7338/ffmpeg-2023-06-21-git-1bcb8a7338-essentials_build.zip
17
+ set INSTALL_FFMPEG_DIR=%cd%\installer_files\ffmpeg
18
+ set conda_exists=F
19
+
20
+ @rem figure out whether git and conda needs to be installed
21
+ call "%CONDA_ROOT_PREFIX%\_conda.exe" --version >nul 2>&1
22
+ if "%ERRORLEVEL%" EQU "0" set conda_exists=T
23
+
24
+ @rem (if necessary) install git and conda into a contained environment
25
+ @rem download conda
26
+ if "%conda_exists%" == "F" (
27
+ echo Downloading Miniconda from %MINICONDA_DOWNLOAD_URL% to %INSTALL_DIR%\miniconda_installer.exe
28
+
29
+ mkdir "%INSTALL_DIR%"
30
+ call curl -Lk "%MINICONDA_DOWNLOAD_URL%" > "%INSTALL_DIR%\miniconda_installer.exe" || ( echo. && echo Miniconda failed to download. && goto end )
31
+
32
+ echo Installing Miniconda to %CONDA_ROOT_PREFIX%
33
+ start /wait "" "%INSTALL_DIR%\miniconda_installer.exe" /InstallationType=JustMe /NoShortcuts=1 /AddToPath=0 /RegisterPython=0 /NoRegistry=1 /S /D=%CONDA_ROOT_PREFIX%
34
+
35
+ @rem test the conda binary
36
+ echo Miniconda version:
37
+ call "%CONDA_ROOT_PREFIX%\_conda.exe" --version || ( echo. && echo Miniconda not found. && goto end )
38
+ )
39
+
40
+ @rem create the installer env
41
+ if not exist "%INSTALL_ENV_DIR%" (
42
+ echo Packages to install: %PACKAGES_TO_INSTALL%
43
+ call "%CONDA_ROOT_PREFIX%\_conda.exe" create --no-shortcuts -y -k --prefix "%INSTALL_ENV_DIR%" python=3.10 || ( echo. && echo Conda environment creation failed. && goto end )
44
+ )
45
+
46
+ if not exist "%INSTALL_FFMPEG_DIR%" (
47
+ echo Downloading ffmpeg from %FFMPEG_DOWNLOAD_URL% to %INSTALL_DIR%
48
+ call curl -Lk "%FFMPEG_DOWNLOAD_URL%" > "%INSTALL_DIR%\ffmpeg.zip" || ( echo. && echo ffmpeg failed to download. && goto end )
49
+ call powershell -command "Expand-Archive -Force '%INSTALL_DIR%\ffmpeg.zip' '%INSTALL_DIR%\'"
50
+
51
+ cd "installer_files"
52
+ setlocal EnableExtensions EnableDelayedExpansion
53
+
54
+ for /f "tokens=*" %%f in ('dir /s /b /ad "ffmpeg*"') do (
55
+ ren "%%f" "ffmpeg"
56
+ )
57
+ endlocal
58
+ setx PATH "%INSTALL_FFMPEG_DIR%\bin\;%PATH%"
59
+ echo To use videos, you need to restart roop after this installation.
60
+ cd ..
61
+ )
62
+
63
+ @rem check if conda environment was actually created
64
+ if not exist "%INSTALL_ENV_DIR%\python.exe" ( echo. && echo ERROR: Conda environment is empty. && goto end )
65
+
66
+ @rem activate installer env
67
+ call "%CONDA_ROOT_PREFIX%\condabin\conda.bat" activate "%INSTALL_ENV_DIR%" || ( echo. && echo Miniconda hook not found. && goto end )
68
+
69
+ @rem setup installer env
70
+ echo Launching roop unleashed
71
+ call python installer.py %COMMANDLINE_ARGS%
72
+
73
+ echo.
74
+ echo Done!
75
+
76
+ :end
77
+ pause
78
+
79
+
80
+
models/CLIP/rd64-uni-refined.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4956f9a7978a75630b08c9d6ec075b7c51cf43b4751b686e3a011d4012ddc9d
3
+ size 4720707
models/CodeFormer/CodeFormerv0.1.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9aa48fc4b21224d85784c9a58885201284ec8e590b988126db2c07495b421d36
3
+ size 376821951
models/DMDNet.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70daeb4b1fd10f241043b587d892a941f2651d7322db02f06ff64b166537f65c
3
+ size 603684323
models/GFPGANv1.4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5060d6c8d84851bbb8da630bea59b56414b49923a2b9304fb08f72d4c98f0aeb
3
+ size 340256688
models/GPEN-BFR-512.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0960f836488735444d508b588e44fb5dfd19c68fde9163ad7878aa24d1d5115e
3
+ size 284250449
models/inswapper_128.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4a3f08c753cb72d04e10aa0f7dbe3deebbf39567d4ead6dce08e98aa49e16af
3
+ size 554253681
mypy.ini ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ [mypy]
2
+ check_untyped_defs = True
3
+ disallow_any_generics = True
4
+ disallow_untyped_calls = True
5
+ disallow_untyped_defs = True
6
+ ignore_missing_imports = True
7
+ strict_optional = False
requirements.txt ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu118
2
+
3
+ numpy==1.24.2
4
+ gradio==3.44.2
5
+ opencv-python==4.8.0.76
6
+ onnx==1.14.1
7
+ insightface==0.7.3
8
+ psutil==5.9.5
9
+ pillow==10.0.1
10
+ torch==2.0.1+cu118; sys_platform != 'darwin'
11
+ torch==2.0.1; sys_platform == 'darwin'
12
+ torchvision==0.15.2+cu118; sys_platform != 'darwin'
13
+ torchvision==0.15.2; sys_platform == 'darwin'
14
+ onnxruntime==1.16.0; sys_platform == 'darwin' and platform_machine != 'arm64'
15
+ onnxruntime-silicon==1.13.1; sys_platform == 'darwin' and platform_machine == 'arm64'
16
+ onnxruntime-gpu==1.16.1; sys_platform != 'darwin'
17
+ protobuf==4.23.2
18
+ tqdm==4.66.1
19
+ ftfy
20
+ regex
21
+ pyvirtualcam
roop-unleashed.ipynb ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": [],
7
+ "gpuType": "T4",
8
+ "collapsed_sections": [
9
+ "UdQ1VHdI8lCf"
10
+ ]
11
+ },
12
+ "kernelspec": {
13
+ "name": "python3",
14
+ "display_name": "Python 3"
15
+ },
16
+ "language_info": {
17
+ "name": "python"
18
+ },
19
+ "accelerator": "GPU"
20
+ },
21
+ "cells": [
22
+ {
23
+ "cell_type": "markdown",
24
+ "source": [
25
+ "# Colab for roop-unleashed - Gradio version\n",
26
+ "https://github.com/C0untFloyd/roop-unleashed\n"
27
+ ],
28
+ "metadata": {
29
+ "id": "G9BdiCppV6AS"
30
+ }
31
+ },
32
+ {
33
+ "cell_type": "markdown",
34
+ "source": [
35
+ "Installing & preparing requirements"
36
+ ],
37
+ "metadata": {
38
+ "id": "0ZYRNb0AWLLW"
39
+ }
40
+ },
41
+ {
42
+ "cell_type": "code",
43
+ "execution_count": null,
44
+ "metadata": {
45
+ "id": "t1yPuhdySqCq"
46
+ },
47
+ "outputs": [],
48
+ "source": [
49
+ "!git clone https://github.com/C0untFloyd/roop-unleashed.git\n",
50
+ "%cd roop-unleashed\n",
51
+ "!mv config_colab.yaml config.yaml\n",
52
+ "!pip install pip install -r requirements.txt"
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "markdown",
57
+ "source": [
58
+ "Running roop-unleashed with default config"
59
+ ],
60
+ "metadata": {
61
+ "id": "u_4JQiSlV9Fi"
62
+ }
63
+ },
64
+ {
65
+ "cell_type": "code",
66
+ "source": [
67
+ "!python run.py"
68
+ ],
69
+ "metadata": {
70
+ "id": "Is6U2huqSzLE"
71
+ },
72
+ "execution_count": null,
73
+ "outputs": []
74
+ },
75
+ {
76
+ "cell_type": "markdown",
77
+ "source": [
78
+ "### Download generated images folder\n",
79
+ "(only needed if you want to zip the generated output)"
80
+ ],
81
+ "metadata": {
82
+ "id": "UdQ1VHdI8lCf"
83
+ }
84
+ },
85
+ {
86
+ "cell_type": "code",
87
+ "source": [
88
+ "import shutil\n",
89
+ "import os\n",
90
+ "from google.colab import files\n",
91
+ "\n",
92
+ "def zip_directory(directory_path, zip_path):\n",
93
+ " shutil.make_archive(zip_path, 'zip', directory_path)\n",
94
+ "\n",
95
+ "# Set the directory path you want to download\n",
96
+ "directory_path = '/content/roop-unleashed/output'\n",
97
+ "\n",
98
+ "# Set the zip file name\n",
99
+ "zip_filename = 'fake_output.zip'\n",
100
+ "\n",
101
+ "# Zip the directory\n",
102
+ "zip_directory(directory_path, zip_filename)\n",
103
+ "\n",
104
+ "# Download the zip file\n",
105
+ "files.download(zip_filename+'.zip')\n"
106
+ ],
107
+ "metadata": {
108
+ "colab": {
109
+ "base_uri": "https://localhost:8080/",
110
+ "height": 17
111
+ },
112
+ "id": "oYjWveAmw10X",
113
+ "outputId": "5b4c3650-f951-434a-c650-5525a8a70c1e"
114
+ },
115
+ "execution_count": null,
116
+ "outputs": [
117
+ {
118
+ "output_type": "display_data",
119
+ "data": {
120
+ "text/plain": [
121
+ "<IPython.core.display.Javascript object>"
122
+ ],
123
+ "application/javascript": [
124
+ "\n",
125
+ " async function download(id, filename, size) {\n",
126
+ " if (!google.colab.kernel.accessAllowed) {\n",
127
+ " return;\n",
128
+ " }\n",
129
+ " const div = document.createElement('div');\n",
130
+ " const label = document.createElement('label');\n",
131
+ " label.textContent = `Downloading \"${filename}\": `;\n",
132
+ " div.appendChild(label);\n",
133
+ " const progress = document.createElement('progress');\n",
134
+ " progress.max = size;\n",
135
+ " div.appendChild(progress);\n",
136
+ " document.body.appendChild(div);\n",
137
+ "\n",
138
+ " const buffers = [];\n",
139
+ " let downloaded = 0;\n",
140
+ "\n",
141
+ " const channel = await google.colab.kernel.comms.open(id);\n",
142
+ " // Send a message to notify the kernel that we're ready.\n",
143
+ " channel.send({})\n",
144
+ "\n",
145
+ " for await (const message of channel.messages) {\n",
146
+ " // Send a message to notify the kernel that we're ready.\n",
147
+ " channel.send({})\n",
148
+ " if (message.buffers) {\n",
149
+ " for (const buffer of message.buffers) {\n",
150
+ " buffers.push(buffer);\n",
151
+ " downloaded += buffer.byteLength;\n",
152
+ " progress.value = downloaded;\n",
153
+ " }\n",
154
+ " }\n",
155
+ " }\n",
156
+ " const blob = new Blob(buffers, {type: 'application/binary'});\n",
157
+ " const a = document.createElement('a');\n",
158
+ " a.href = window.URL.createObjectURL(blob);\n",
159
+ " a.download = filename;\n",
160
+ " div.appendChild(a);\n",
161
+ " a.click();\n",
162
+ " div.remove();\n",
163
+ " }\n",
164
+ " "
165
+ ]
166
+ },
167
+ "metadata": {}
168
+ },
169
+ {
170
+ "output_type": "display_data",
171
+ "data": {
172
+ "text/plain": [
173
+ "<IPython.core.display.Javascript object>"
174
+ ],
175
+ "application/javascript": [
176
+ "download(\"download_789eab11-93d2-4880-adf3-6aceee0cc5f9\", \"fake_output.zip.zip\", 80125)"
177
+ ]
178
+ },
179
+ "metadata": {}
180
+ }
181
+ ]
182
+ }
183
+ ]
184
+ }
roop/FaceSet.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ class FaceSet:
4
+ faces = []
5
+ ref_images = []
6
+ embedding_average = 'None'
7
+ embeddings_backup = None
8
+
9
+ def __init__(self):
10
+ self.faces = []
11
+ self.ref_images = []
12
+ self.embeddings_backup = None
13
+
14
+ def AverageEmbeddings(self):
15
+ if len(self.faces) > 1 and self.embeddings_backup is None:
16
+ self.embeddings_backup = self.faces[0]['embedding']
17
+ embeddings = [face.embedding for face in self.faces]
18
+
19
+ self.faces[0]['embedding'] = np.mean(embeddings, axis=0)
20
+ # try median too?
roop/ProcessEntry.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ class ProcessEntry:
2
+ def __init__(self, filename: str, start: int, end: int, fps: float):
3
+ self.filename = filename
4
+ self.finalname = None
5
+ self.startframe = start
6
+ self.endframe = end
7
+ self.fps = fps
roop/ProcessMgr.py ADDED
@@ -0,0 +1,457 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import numpy as np
4
+ import psutil
5
+
6
+ from roop.ProcessOptions import ProcessOptions
7
+
8
+ from roop.face_util import get_first_face, get_all_faces, rotate_image_180
9
+ from roop.utilities import compute_cosine_distance, get_device, str_to_class
10
+
11
+ from typing import Any, List, Callable
12
+ from roop.typing import Frame
13
+ from concurrent.futures import ThreadPoolExecutor, as_completed
14
+ from threading import Thread, Lock
15
+ from queue import Queue
16
+ from tqdm import tqdm
17
+ from roop.ffmpeg_writer import FFMPEG_VideoWriter
18
+ import roop.globals
19
+
20
+
21
+ def create_queue(temp_frame_paths: List[str]) -> Queue[str]:
22
+ queue: Queue[str] = Queue()
23
+ for frame_path in temp_frame_paths:
24
+ queue.put(frame_path)
25
+ return queue
26
+
27
+
28
+ def pick_queue(queue: Queue[str], queue_per_future: int) -> List[str]:
29
+ queues = []
30
+ for _ in range(queue_per_future):
31
+ if not queue.empty():
32
+ queues.append(queue.get())
33
+ return queues
34
+
35
+
36
+ class ProcessMgr():
37
+ input_face_datas = []
38
+ target_face_datas = []
39
+
40
+ processors = []
41
+ options : ProcessOptions = None
42
+
43
+ num_threads = 1
44
+ current_index = 0
45
+ processing_threads = 1
46
+ buffer_wait_time = 0.1
47
+
48
+ lock = Lock()
49
+
50
+ frames_queue = None
51
+ processed_queue = None
52
+
53
+ videowriter= None
54
+
55
+ progress_gradio = None
56
+ total_frames = 0
57
+
58
+
59
+
60
+
61
+ plugins = {
62
+ 'faceswap' : 'FaceSwapInsightFace',
63
+ 'mask_clip2seg' : 'Mask_Clip2Seg',
64
+ 'codeformer' : 'Enhance_CodeFormer',
65
+ 'gfpgan' : 'Enhance_GFPGAN',
66
+ 'dmdnet' : 'Enhance_DMDNet',
67
+ 'gpen' : 'Enhance_GPEN',
68
+ }
69
+
70
+ def __init__(self, progress):
71
+ if progress is not None:
72
+ self.progress_gradio = progress
73
+
74
+
75
+ def initialize(self, input_faces, target_faces, options):
76
+ self.input_face_datas = input_faces
77
+ self.target_face_datas = target_faces
78
+ self.options = options
79
+
80
+ processornames = options.processors.split(",")
81
+ devicename = get_device()
82
+ if len(self.processors) < 1:
83
+ for pn in processornames:
84
+ classname = self.plugins[pn]
85
+ module = 'roop.processors.' + classname
86
+ p = str_to_class(module, classname)
87
+ p.Initialize(devicename)
88
+ self.processors.append(p)
89
+ else:
90
+ for i in range(len(self.processors) -1, -1, -1):
91
+ if not self.processors[i].processorname in processornames:
92
+ self.processors[i].Release()
93
+ del self.processors[i]
94
+
95
+ for i,pn in enumerate(processornames):
96
+ if i >= len(self.processors) or self.processors[i].processorname != pn:
97
+ p = None
98
+ classname = self.plugins[pn]
99
+ module = 'roop.processors.' + classname
100
+ p = str_to_class(module, classname)
101
+ p.Initialize(devicename)
102
+ if p is not None:
103
+ self.processors.insert(i, p)
104
+
105
+
106
+
107
+ def run_batch(self, source_files, target_files, threads:int = 1):
108
+ progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
109
+ self.total_frames = len(source_files)
110
+ self.num_threads = threads
111
+ with tqdm(total=self.total_frames, desc='Processing', unit='frame', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
112
+ with ThreadPoolExecutor(max_workers=threads) as executor:
113
+ futures = []
114
+ queue = create_queue(source_files)
115
+ queue_per_future = max(len(source_files) // threads, 1)
116
+ while not queue.empty():
117
+ future = executor.submit(self.process_frames, source_files, target_files, pick_queue(queue, queue_per_future), lambda: self.update_progress(progress))
118
+ futures.append(future)
119
+ for future in as_completed(futures):
120
+ future.result()
121
+
122
+
123
+ def process_frames(self, source_files: List[str], target_files: List[str], current_files, update: Callable[[], None]) -> None:
124
+ for f in current_files:
125
+ if not roop.globals.processing:
126
+ return
127
+
128
+ temp_frame = cv2.imread(f)
129
+ if temp_frame is not None:
130
+ resimg = self.process_frame(temp_frame)
131
+ if resimg is not None:
132
+ i = source_files.index(f)
133
+ cv2.imwrite(target_files[i], resimg)
134
+ if update:
135
+ update()
136
+
137
+
138
+
139
+ def read_frames_thread(self, cap, frame_start, frame_end, num_threads):
140
+ num_frame = 0
141
+ total_num = frame_end - frame_start
142
+ if frame_start > 0:
143
+ cap.set(cv2.CAP_PROP_POS_FRAMES,frame_start)
144
+
145
+ while True and roop.globals.processing:
146
+ ret, frame = cap.read()
147
+ if not ret:
148
+ break
149
+
150
+ self.frames_queue[num_frame % num_threads].put(frame, block=True)
151
+ num_frame += 1
152
+ if num_frame == total_num:
153
+ break
154
+
155
+ for i in range(num_threads):
156
+ self.frames_queue[i].put(None)
157
+
158
+
159
+
160
+ def process_videoframes(self, threadindex, progress) -> None:
161
+ while True:
162
+ frame = self.frames_queue[threadindex].get()
163
+ if frame is None:
164
+ self.processing_threads -= 1
165
+ self.processed_queue[threadindex].put((False, None))
166
+ return
167
+ else:
168
+ resimg = self.process_frame(frame)
169
+ self.processed_queue[threadindex].put((True, resimg))
170
+ del frame
171
+ progress()
172
+
173
+
174
+ def write_frames_thread(self):
175
+ nextindex = 0
176
+ num_producers = self.num_threads
177
+
178
+ while True:
179
+ process, frame = self.processed_queue[nextindex % self.num_threads].get()
180
+ nextindex += 1
181
+ if frame is not None:
182
+ self.videowriter.write_frame(frame)
183
+ del frame
184
+ elif process == False:
185
+ num_producers -= 1
186
+ if num_producers < 1:
187
+ return
188
+
189
+
190
+
191
+ def run_batch_inmem(self, source_video, target_video, frame_start, frame_end, fps, threads:int = 1, skip_audio=False):
192
+ cap = cv2.VideoCapture(source_video)
193
+ # frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
194
+ frame_count = (frame_end - frame_start) + 1
195
+ width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
196
+ height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
197
+
198
+ self.total_frames = frame_count
199
+ self.num_threads = threads
200
+
201
+ self.processing_threads = self.num_threads
202
+ self.frames_queue = []
203
+ self.processed_queue = []
204
+ for _ in range(threads):
205
+ self.frames_queue.append(Queue(1))
206
+ self.processed_queue.append(Queue(1))
207
+
208
+ self.videowriter = FFMPEG_VideoWriter(target_video, (width, height), fps, codec=roop.globals.video_encoder, crf=roop.globals.video_quality, audiofile=None)
209
+
210
+ readthread = Thread(target=self.read_frames_thread, args=(cap, frame_start, frame_end, threads))
211
+ readthread.start()
212
+
213
+ writethread = Thread(target=self.write_frames_thread)
214
+ writethread.start()
215
+
216
+ progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
217
+ with tqdm(total=self.total_frames, desc='Processing', unit='frames', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
218
+ with ThreadPoolExecutor(thread_name_prefix='swap_proc', max_workers=self.num_threads) as executor:
219
+ futures = []
220
+
221
+ for threadindex in range(threads):
222
+ future = executor.submit(self.process_videoframes, threadindex, lambda: self.update_progress(progress))
223
+ futures.append(future)
224
+
225
+ for future in as_completed(futures):
226
+ future.result()
227
+ # wait for the task to complete
228
+ readthread.join()
229
+ writethread.join()
230
+ cap.release()
231
+ self.videowriter.close()
232
+ self.frames_queue.clear()
233
+ self.processed_queue.clear()
234
+
235
+
236
+
237
+
238
+ def update_progress(self, progress: Any = None) -> None:
239
+ process = psutil.Process(os.getpid())
240
+ memory_usage = process.memory_info().rss / 1024 / 1024 / 1024
241
+ msg = 'memory_usage: ' + '{:.2f}'.format(memory_usage).zfill(5) + f' GB execution_threads {self.num_threads}'
242
+ progress.set_postfix({
243
+ 'memory_usage': '{:.2f}'.format(memory_usage).zfill(5) + 'GB',
244
+ 'execution_threads': self.num_threads
245
+ })
246
+ progress.update(1)
247
+ self.progress_gradio((progress.n, self.total_frames), desc='Processing', total=self.total_frames, unit='frames')
248
+
249
+
250
+ def on_no_face_action(self, frame:Frame):
251
+ if roop.globals.no_face_action == 0:
252
+ return None, frame
253
+ elif roop.globals.no_face_action == 2:
254
+ return None, None
255
+
256
+
257
+ faces = get_all_faces(frame)
258
+ if faces is not None:
259
+ return faces, frame
260
+ return None, frame
261
+
262
+
263
+
264
+
265
+ def process_frame(self, frame:Frame):
266
+ if len(self.input_face_datas) < 1:
267
+ return frame
268
+
269
+ temp_frame = frame.copy()
270
+ num_swapped, temp_frame = self.swap_faces(frame, temp_frame)
271
+ if num_swapped > 0:
272
+ return temp_frame
273
+ if roop.globals.no_face_action == 0:
274
+ return frame
275
+ if roop.globals.no_face_action == 2:
276
+ return None
277
+ else:
278
+ copyframe = frame.copy()
279
+ copyframe = rotate_image_180(copyframe)
280
+ temp_frame = copyframe.copy()
281
+ num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame)
282
+ if num_swapped == 0:
283
+ return frame
284
+ temp_frame = rotate_image_180(temp_frame)
285
+ return temp_frame
286
+
287
+
288
+
289
+ def swap_faces(self, frame, temp_frame):
290
+ num_faces_found = 0
291
+ if self.options.swap_mode == "first":
292
+ face = get_first_face(frame)
293
+ if face is None:
294
+ return num_faces_found, frame
295
+ num_faces_found += 1
296
+ temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
297
+
298
+ else:
299
+ faces = get_all_faces(frame)
300
+ if faces is None:
301
+ return num_faces_found, frame
302
+
303
+ if self.options.swap_mode == "all":
304
+ for face in faces:
305
+ num_faces_found += 1
306
+ temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
307
+ del face
308
+
309
+ elif self.options.swap_mode == "selected":
310
+ for i,tf in enumerate(self.target_face_datas):
311
+ for face in faces:
312
+ if compute_cosine_distance(tf.embedding, face.embedding) <= self.options.face_distance_threshold:
313
+ if i < len(self.input_face_datas):
314
+ temp_frame = self.process_face(i, face, temp_frame)
315
+ num_faces_found += 1
316
+ break
317
+ del face
318
+ elif self.options.swap_mode == "all_female" or self.options.swap_mode == "all_male":
319
+ gender = 'F' if self.options.swap_mode == "all_female" else 'M'
320
+ for face in faces:
321
+ if face.sex == gender:
322
+ num_faces_found += 1
323
+ temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
324
+ del face
325
+
326
+ if num_faces_found == 0:
327
+ return num_faces_found, frame
328
+
329
+ maskprocessor = next((x for x in self.processors if x.processorname == 'clip2seg'), None)
330
+ if maskprocessor is not None:
331
+ temp_frame = self.process_mask(maskprocessor, frame, temp_frame)
332
+ return num_faces_found, temp_frame
333
+
334
+
335
+ def process_face(self,face_index, target_face, frame:Frame):
336
+ enhanced_frame = None
337
+ inputface = self.input_face_datas[face_index].faces[0]
338
+
339
+ for p in self.processors:
340
+ if p.type == 'swap':
341
+ fake_frame = p.Run(inputface, target_face, frame)
342
+ scale_factor = 0.0
343
+ elif p.type == 'mask':
344
+ continue
345
+ else:
346
+ enhanced_frame, scale_factor = p.Run(self.input_face_datas[face_index], target_face, fake_frame)
347
+
348
+ upscale = 512
349
+ orig_width = fake_frame.shape[1]
350
+ fake_frame = cv2.resize(fake_frame, (upscale, upscale), cv2.INTER_CUBIC)
351
+ mask_offsets = inputface.mask_offsets
352
+
353
+ if enhanced_frame is None:
354
+ scale_factor = int(upscale / orig_width)
355
+ result = self.paste_upscale(fake_frame, fake_frame, target_face.matrix, frame, scale_factor, mask_offsets)
356
+ else:
357
+ result = self.paste_upscale(fake_frame, enhanced_frame, target_face.matrix, frame, scale_factor, mask_offsets)
358
+ return result
359
+
360
+
361
+
362
+
363
+ def cutout(self, frame:Frame, start_x, start_y, end_x, end_y):
364
+ if start_x < 0:
365
+ start_x = 0
366
+ if start_y < 0:
367
+ start_y = 0
368
+ if end_x > frame.shape[1]:
369
+ end_x = frame.shape[1]
370
+ if end_y > frame.shape[0]:
371
+ end_y = frame.shape[0]
372
+ return frame[start_y:end_y, start_x:end_x], start_x, start_y, end_x, end_y
373
+
374
+
375
+
376
+ # Paste back adapted from here
377
+ # https://github.com/fAIseh00d/refacer/blob/main/refacer.py
378
+ # which is revised insightface paste back code
379
+
380
+ def paste_upscale(self, fake_face, upsk_face, M, target_img, scale_factor, mask_offsets):
381
+ M_scale = M * scale_factor
382
+ IM = cv2.invertAffineTransform(M_scale)
383
+
384
+ face_matte = np.full((target_img.shape[0],target_img.shape[1]), 255, dtype=np.uint8)
385
+ ##Generate white square sized as a upsk_face
386
+ img_matte = np.full((upsk_face.shape[0],upsk_face.shape[1]), 255, dtype=np.uint8)
387
+ if mask_offsets[0] > 0:
388
+ img_matte[:mask_offsets[0],:] = 0
389
+ if mask_offsets[1] > 0:
390
+ img_matte[-mask_offsets[1]:,:] = 0
391
+
392
+ ##Transform white square back to target_img
393
+ img_matte = cv2.warpAffine(img_matte, IM, (target_img.shape[1], target_img.shape[0]), flags=cv2.INTER_NEAREST, borderValue=0.0)
394
+ ##Blacken the edges of face_matte by 1 pixels (so the mask in not expanded on the image edges)
395
+ img_matte[:1,:] = img_matte[-1:,:] = img_matte[:,:1] = img_matte[:,-1:] = 0
396
+
397
+ #Detect the affine transformed white area
398
+ mask_h_inds, mask_w_inds = np.where(img_matte==255)
399
+ #Calculate the size (and diagonal size) of transformed white area width and height boundaries
400
+ mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
401
+ mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
402
+ mask_size = int(np.sqrt(mask_h*mask_w))
403
+ #Calculate the kernel size for eroding img_matte by kernel (insightface empirical guess for best size was max(mask_size//10,10))
404
+ # k = max(mask_size//12, 8)
405
+ k = max(mask_size//10, 10)
406
+ kernel = np.ones((k,k),np.uint8)
407
+ img_matte = cv2.erode(img_matte,kernel,iterations = 1)
408
+ #Calculate the kernel size for blurring img_matte by blur_size (insightface empirical guess for best size was max(mask_size//20, 5))
409
+ # k = max(mask_size//24, 4)
410
+ k = max(mask_size//20, 5)
411
+ kernel_size = (k, k)
412
+ blur_size = tuple(2*i+1 for i in kernel_size)
413
+ img_matte = cv2.GaussianBlur(img_matte, blur_size, 0)
414
+
415
+ #Normalize images to float values and reshape
416
+ img_matte = img_matte.astype(np.float32)/255
417
+ face_matte = face_matte.astype(np.float32)/255
418
+ img_matte = np.minimum(face_matte, img_matte)
419
+ img_matte = np.reshape(img_matte, [img_matte.shape[0],img_matte.shape[1],1])
420
+ ##Transform upcaled face back to target_img
421
+ paste_face = cv2.warpAffine(upsk_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
422
+ if upsk_face is not fake_face:
423
+ fake_face = cv2.warpAffine(fake_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
424
+ paste_face = cv2.addWeighted(paste_face, self.options.blend_ratio, fake_face, 1.0 - self.options.blend_ratio, 0)
425
+
426
+ ##Re-assemble image
427
+ paste_face = img_matte * paste_face
428
+ paste_face = paste_face + (1-img_matte) * target_img.astype(np.float32)
429
+ del img_matte
430
+ del face_matte
431
+ del upsk_face
432
+ del fake_face
433
+ return paste_face.astype(np.uint8)
434
+
435
+
436
+ def process_mask(self, processor, frame:Frame, target:Frame):
437
+ img_mask = processor.Run(frame, self.options.masking_text)
438
+ img_mask = cv2.resize(img_mask, (target.shape[1], target.shape[0]))
439
+ img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1])
440
+
441
+ target = target.astype(np.float32)
442
+ result = (1-img_mask) * target
443
+ result += img_mask * frame.astype(np.float32)
444
+ return np.uint8(result)
445
+
446
+
447
+
448
+
449
+ def unload_models():
450
+ pass
451
+
452
+
453
+ def release_resources(self):
454
+ for p in self.processors:
455
+ p.Release()
456
+ self.processors.clear()
457
+
roop/ProcessOptions.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ class ProcessOptions:
2
+
3
+ def __init__(self,processors, face_distance, blend_ratio, swap_mode, selected_index, masking_text):
4
+ self.processors = processors
5
+ self.face_distance_threshold = face_distance
6
+ self.blend_ratio = blend_ratio
7
+ self.swap_mode = swap_mode
8
+ self.selected_index = selected_index
9
+ self.masking_text = masking_text
roop/__init__.py ADDED
File without changes
roop/__pycache__/FaceSet.cpython-310.pyc ADDED
Binary file (1 kB). View file
 
roop/__pycache__/ProcessEntry.cpython-310.pyc ADDED
Binary file (575 Bytes). View file
 
roop/__pycache__/ProcessMgr.cpython-310.pyc ADDED
Binary file (12.2 kB). View file
 
roop/__pycache__/ProcessOptions.cpython-310.pyc ADDED
Binary file (595 Bytes). View file
 
roop/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (133 Bytes). View file
 
roop/__pycache__/capturer.cpython-310.pyc ADDED
Binary file (1.08 kB). View file
 
roop/__pycache__/core.cpython-310.pyc ADDED
Binary file (10.5 kB). View file
 
roop/__pycache__/face_util.cpython-310.pyc ADDED
Binary file (8.1 kB). View file
 
roop/__pycache__/ffmpeg_writer.cpython-310.pyc ADDED
Binary file (5.62 kB). View file
 
roop/__pycache__/globals.cpython-310.pyc ADDED
Binary file (1.07 kB). View file
 
roop/__pycache__/metadata.cpython-310.pyc ADDED
Binary file (178 Bytes). View file
 
roop/__pycache__/template_parser.cpython-310.pyc ADDED
Binary file (1.09 kB). View file
 
roop/__pycache__/typing.cpython-310.pyc ADDED
Binary file (321 Bytes). View file
 
roop/__pycache__/util_ffmpeg.cpython-310.pyc ADDED
Binary file (3.84 kB). View file
 
roop/__pycache__/utilities.cpython-310.pyc ADDED
Binary file (10.9 kB). View file
 
roop/capturer.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+ import cv2
3
+
4
+ from roop.typing import Frame
5
+
6
+ def get_image_frame(filename: str):
7
+ try:
8
+ frame = cv2.imread(filename)
9
+ return frame
10
+ except:
11
+ print(f"Exception reading {filename}")
12
+ return None
13
+
14
+
15
+ def get_video_frame(video_path: str, frame_number: int = 0) -> Optional[Frame]:
16
+ capture = cv2.VideoCapture(video_path)
17
+ frame_total = capture.get(cv2.CAP_PROP_FRAME_COUNT)
18
+ capture.set(cv2.CAP_PROP_POS_FRAMES, min(frame_total, frame_number - 1))
19
+ has_frame, frame = capture.read()
20
+ capture.release()
21
+ if has_frame:
22
+ return frame
23
+ return None
24
+
25
+
26
+ def get_video_frame_total(video_path: str) -> int:
27
+ capture = cv2.VideoCapture(video_path)
28
+ video_frame_total = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
29
+ capture.release()
30
+ return video_frame_total
roop/core.py ADDED
@@ -0,0 +1,360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ import os
4
+ import sys
5
+ import shutil
6
+ # single thread doubles cuda performance - needs to be set before torch import
7
+ if any(arg.startswith('--execution-provider') for arg in sys.argv):
8
+ os.environ['OMP_NUM_THREADS'] = '1'
9
+
10
+ import warnings
11
+ from typing import List
12
+ import platform
13
+ import signal
14
+ import torch
15
+ import onnxruntime
16
+ import pathlib
17
+
18
+ from time import time
19
+
20
+ import roop.globals
21
+ import roop.metadata
22
+ import roop.utilities as util
23
+ import roop.util_ffmpeg as ffmpeg
24
+ import ui.main as main
25
+ from settings import Settings
26
+ from roop.face_util import extract_face_images
27
+ from roop.ProcessEntry import ProcessEntry
28
+ from roop.ProcessMgr import ProcessMgr
29
+ from roop.ProcessOptions import ProcessOptions
30
+ from roop.capturer import get_video_frame_total
31
+
32
+
33
+ clip_text = None
34
+
35
+ call_display_ui = None
36
+
37
+ process_mgr = None
38
+
39
+
40
+ if 'ROCMExecutionProvider' in roop.globals.execution_providers:
41
+ del torch
42
+
43
+ warnings.filterwarnings('ignore', category=FutureWarning, module='insightface')
44
+ warnings.filterwarnings('ignore', category=UserWarning, module='torchvision')
45
+
46
+
47
+ def parse_args() -> None:
48
+ signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
49
+ roop.globals.headless = False
50
+ # Always enable all processors when using GUI
51
+ if len(sys.argv) > 1:
52
+ print('No CLI args supported - use Settings Tab instead')
53
+ roop.globals.frame_processors = ['face_swapper', 'face_enhancer']
54
+
55
+
56
+ def encode_execution_providers(execution_providers: List[str]) -> List[str]:
57
+ return [execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers]
58
+
59
+
60
+ def decode_execution_providers(execution_providers: List[str]) -> List[str]:
61
+ return [provider for provider, encoded_execution_provider in zip(onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers()))
62
+ if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers)]
63
+
64
+
65
+ def suggest_max_memory() -> int:
66
+ if platform.system().lower() == 'darwin':
67
+ return 4
68
+ return 16
69
+
70
+
71
+ def suggest_execution_providers() -> List[str]:
72
+ return encode_execution_providers(onnxruntime.get_available_providers())
73
+
74
+
75
+ def suggest_execution_threads() -> int:
76
+ if 'DmlExecutionProvider' in roop.globals.execution_providers:
77
+ return 1
78
+ if 'ROCMExecutionProvider' in roop.globals.execution_providers:
79
+ return 1
80
+ return 8
81
+
82
+
83
+ def limit_resources() -> None:
84
+ # limit memory usage
85
+ if roop.globals.max_memory:
86
+ memory = roop.globals.max_memory * 1024 ** 3
87
+ if platform.system().lower() == 'darwin':
88
+ memory = roop.globals.max_memory * 1024 ** 6
89
+ if platform.system().lower() == 'windows':
90
+ import ctypes
91
+ kernel32 = ctypes.windll.kernel32 # type: ignore[attr-defined]
92
+ kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
93
+ else:
94
+ import resource
95
+ resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
96
+
97
+
98
+
99
+ def release_resources() -> None:
100
+ import gc
101
+ global process_mgr
102
+
103
+ if process_mgr is not None:
104
+ process_mgr.release_resources()
105
+ process_mgr = None
106
+
107
+ gc.collect()
108
+ # if 'CUDAExecutionProvider' in roop.globals.execution_providers and torch.cuda.is_available():
109
+ # with torch.cuda.device('cuda'):
110
+ # torch.cuda.empty_cache()
111
+ # torch.cuda.ipc_collect()
112
+
113
+
114
+ def pre_check() -> bool:
115
+ if sys.version_info < (3, 9):
116
+ update_status('Python version is not supported - please upgrade to 3.9 or higher.')
117
+ return False
118
+
119
+ download_directory_path = util.resolve_relative_path('../models')
120
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/inswapper_128.onnx'])
121
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/GFPGANv1.4.onnx'])
122
+ util.conditional_download(download_directory_path, ['https://github.com/csxmli2016/DMDNet/releases/download/v1/DMDNet.pth'])
123
+ util.conditional_download(download_directory_path, ['https://github.com/facefusion/facefusion-assets/releases/download/models/GPEN-BFR-512.onnx'])
124
+
125
+ download_directory_path = util.resolve_relative_path('../models/CLIP')
126
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/rd64-uni-refined.pth'])
127
+ download_directory_path = util.resolve_relative_path('../models/CodeFormer')
128
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/CodeFormerv0.1.onnx'])
129
+
130
+ if not shutil.which('ffmpeg'):
131
+ update_status('ffmpeg is not installed.')
132
+ return True
133
+
134
+ def set_display_ui(function):
135
+ global call_display_ui
136
+
137
+ call_display_ui = function
138
+
139
+
140
+ def update_status(message: str) -> None:
141
+ global call_display_ui
142
+
143
+ print(message)
144
+ if call_display_ui is not None:
145
+ call_display_ui(message)
146
+
147
+
148
+
149
+
150
+ def start() -> None:
151
+ if roop.globals.headless:
152
+ print('Headless mode currently unsupported - starting UI!')
153
+ # faces = extract_face_images(roop.globals.source_path, (False, 0))
154
+ # roop.globals.INPUT_FACES.append(faces[roop.globals.source_face_index])
155
+ # faces = extract_face_images(roop.globals.target_path, (False, util.has_image_extension(roop.globals.target_path)))
156
+ # roop.globals.TARGET_FACES.append(faces[roop.globals.target_face_index])
157
+ # if 'face_enhancer' in roop.globals.frame_processors:
158
+ # roop.globals.selected_enhancer = 'GFPGAN'
159
+
160
+ batch_process(None, False, None)
161
+
162
+
163
+ def get_processing_plugins(use_clip):
164
+ processors = "faceswap"
165
+ if use_clip:
166
+ processors += ",mask_clip2seg"
167
+
168
+ if roop.globals.selected_enhancer == 'GFPGAN':
169
+ processors += ",gfpgan"
170
+ elif roop.globals.selected_enhancer == 'Codeformer':
171
+ processors += ",codeformer"
172
+ elif roop.globals.selected_enhancer == 'DMDNet':
173
+ processors += ",dmdnet"
174
+ elif roop.globals.selected_enhancer == 'GPEN':
175
+ processors += ",gpen"
176
+ return processors
177
+
178
+
179
+ def live_swap(frame, swap_mode, use_clip, clip_text, selected_index = 0):
180
+ global process_mgr
181
+
182
+ if frame is None:
183
+ return frame
184
+
185
+ if process_mgr is None:
186
+ process_mgr = ProcessMgr(None)
187
+
188
+ options = ProcessOptions(get_processing_plugins(use_clip), roop.globals.distance_threshold, roop.globals.blend_ratio, swap_mode, selected_index, clip_text)
189
+ process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options)
190
+ newframe = process_mgr.process_frame(frame)
191
+ if newframe is None:
192
+ return frame
193
+ return newframe
194
+
195
+
196
+ def preview_mask(frame, clip_text):
197
+ import numpy as np
198
+ global process_mgr
199
+
200
+ maskimage = np.zeros((frame.shape), np.uint8)
201
+ if process_mgr is None:
202
+ process_mgr = ProcessMgr(None)
203
+ options = ProcessOptions("mask_clip2seg", roop.globals.distance_threshold, roop.globals.blend_ratio, "None", 0, clip_text)
204
+ process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options)
205
+ maskprocessor = next((x for x in process_mgr.processors if x.processorname == 'clip2seg'), None)
206
+ return process_mgr.process_mask(maskprocessor, frame, maskimage)
207
+
208
+
209
+
210
+
211
+
212
+ def batch_process(files:list[ProcessEntry], use_clip, new_clip_text, use_new_method, progress) -> None:
213
+ global clip_text, process_mgr
214
+
215
+ roop.globals.processing = True
216
+ release_resources()
217
+ limit_resources()
218
+
219
+ # limit threads for some providers
220
+ max_threads = suggest_execution_threads()
221
+ if max_threads == 1:
222
+ roop.globals.execution_threads = 1
223
+
224
+ imagefiles:list[ProcessEntry] = []
225
+ videofiles:list[ProcessEntry] = []
226
+
227
+ update_status('Sorting videos/images')
228
+
229
+
230
+ for index, f in enumerate(files):
231
+ fullname = f.filename
232
+ if util.has_image_extension(fullname):
233
+ destination = util.get_destfilename_from_path(fullname, roop.globals.output_path, f'.{roop.globals.CFG.output_image_format}')
234
+ destination = util.replace_template(destination, index=index)
235
+ pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True)
236
+ f.finalname = destination
237
+ imagefiles.append(f)
238
+
239
+ elif util.is_video(fullname) or util.has_extension(fullname, ['gif']):
240
+ destination = util.get_destfilename_from_path(fullname, roop.globals.output_path, f'__temp.{roop.globals.CFG.output_video_format}')
241
+ f.finalname = destination
242
+ videofiles.append(f)
243
+
244
+
245
+ if process_mgr is None:
246
+ process_mgr = ProcessMgr(progress)
247
+
248
+ options = ProcessOptions(get_processing_plugins(use_clip), roop.globals.distance_threshold, roop.globals.blend_ratio, roop.globals.face_swap_mode, 0, new_clip_text)
249
+ process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options)
250
+
251
+ if(len(imagefiles) > 0):
252
+ update_status('Processing image(s)')
253
+ origimages = []
254
+ fakeimages = []
255
+ for f in imagefiles:
256
+ origimages.append(f.filename)
257
+ fakeimages.append(f.finalname)
258
+
259
+ process_mgr.run_batch(origimages, fakeimages, roop.globals.execution_threads)
260
+ origimages.clear()
261
+ fakeimages.clear()
262
+
263
+ if(len(videofiles) > 0):
264
+ for index,v in enumerate(videofiles):
265
+ if not roop.globals.processing:
266
+ end_processing('Processing stopped!')
267
+ return
268
+ fps = v.fps if v.fps > 0 else util.detect_fps(v.filename)
269
+ if v.endframe == 0:
270
+ v.endframe = get_video_frame_total(v.filename)
271
+
272
+ update_status(f'Creating {os.path.basename(v.finalname)} with {fps} FPS...')
273
+ start_processing = time()
274
+ if roop.globals.keep_frames or not use_new_method:
275
+ util.create_temp(v.filename)
276
+ update_status('Extracting frames...')
277
+ ffmpeg.extract_frames(v.filename,v.startframe,v.endframe, fps)
278
+ if not roop.globals.processing:
279
+ end_processing('Processing stopped!')
280
+ return
281
+
282
+ temp_frame_paths = util.get_temp_frame_paths(v.filename)
283
+ process_mgr.run_batch(temp_frame_paths, temp_frame_paths, roop.globals.execution_threads)
284
+ if not roop.globals.processing:
285
+ end_processing('Processing stopped!')
286
+ return
287
+ if roop.globals.wait_after_extraction:
288
+ extract_path = os.path.dirname(temp_frame_paths[0])
289
+ util.open_folder(extract_path)
290
+ input("Press any key to continue...")
291
+ print("Resorting frames to create video")
292
+ util.sort_rename_frames(extract_path)
293
+
294
+ ffmpeg.create_video(v.filename, f.finalname, fps)
295
+ if not roop.globals.keep_frames:
296
+ util.delete_temp_frames(temp_frame_paths[0])
297
+ else:
298
+ if util.has_extension(v.filename, ['gif']):
299
+ skip_audio = True
300
+ else:
301
+ skip_audio = roop.globals.skip_audio
302
+ process_mgr.run_batch_inmem(v.filename, v.finalname, v.startframe, v.endframe, fps,roop.globals.execution_threads, skip_audio)
303
+
304
+ if not roop.globals.processing:
305
+ end_processing('Processing stopped!')
306
+ return
307
+
308
+ video_file_name = v.finalname
309
+ if os.path.isfile(video_file_name):
310
+ destination = ''
311
+ if util.has_extension(v.filename, ['gif']):
312
+ gifname = util.get_destfilename_from_path(v.filename, roop.globals.output_path, '.gif')
313
+ destination = util.replace_template(gifname, index=index)
314
+ pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True)
315
+
316
+ update_status('Creating final GIF')
317
+ ffmpeg.create_gif_from_video(video_file_name, destination)
318
+ if os.path.isfile(destination):
319
+ os.remove(video_file_name)
320
+ else:
321
+ skip_audio = roop.globals.skip_audio
322
+ destination = util.replace_template(video_file_name, index=index)
323
+ pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True)
324
+
325
+ if not skip_audio:
326
+ ffmpeg.restore_audio(video_file_name, v.filename, v.startframe, v.endframe, destination)
327
+ if os.path.isfile(destination):
328
+ os.remove(video_file_name)
329
+ else:
330
+ shutil.move(video_file_name, destination)
331
+ update_status(f'\nProcessing {os.path.basename(destination)} took {time() - start_processing} secs')
332
+
333
+ else:
334
+ update_status(f'Failed processing {os.path.basename(v.finalname)}!')
335
+ end_processing('Finished')
336
+
337
+
338
+ def end_processing(msg:str):
339
+ update_status(msg)
340
+ roop.globals.target_folder_path = None
341
+ release_resources()
342
+
343
+
344
+ def destroy() -> None:
345
+ if roop.globals.target_path:
346
+ util.clean_temp(roop.globals.target_path)
347
+ release_resources()
348
+ sys.exit()
349
+
350
+
351
+ def run() -> None:
352
+ parse_args()
353
+ if not pre_check():
354
+ return
355
+ roop.globals.CFG = Settings('config.yaml')
356
+ roop.globals.execution_threads = roop.globals.CFG.max_threads
357
+ roop.globals.video_encoder = roop.globals.CFG.output_video_codec
358
+ roop.globals.video_quality = roop.globals.CFG.video_quality
359
+ roop.globals.max_memory = roop.globals.CFG.memory_limit if roop.globals.CFG.memory_limit > 0 else None
360
+ main.run()