""" Convert a CogView3 checkpoint to the Diffusers format. This script converts a CogView3 checkpoint to the Diffusers format, which can then be used with the Diffusers library. Example usage: python scripts/convert_cogview3_to_diffusers.py \ --transformer_checkpoint_path 'your path/cogview3plus_3b/1/mp_rank_00_model_states.pt' \ --vae_checkpoint_path 'your path/3plus_ae/imagekl_ch16.pt' \ --output_path "/raid/yiyi/cogview3_diffusers" \ --dtype "bf16" Arguments: --transformer_checkpoint_path: Path to Transformer state dict. --vae_checkpoint_path: Path to VAE state dict. --output_path: The path to save the converted model. --push_to_hub: Whether to push the converted checkpoint to the HF Hub or not. Defaults to `False`. --text_encoder_cache_dir: Cache directory where text encoder is located. Defaults to None, which means HF_HOME will be used --dtype: The dtype to save the model in (default: "bf16", options: "fp16", "bf16", "fp32"). If None, the dtype of the state dict is considered. Default is "bf16" because CogView3 uses bfloat16 for Training. Note: You must provide either --original_state_dict_repo_id or --checkpoint_path. """ import argparse from contextlib import nullcontext import torch from accelerate import init_empty_weights from transformers import T5EncoderModel, T5Tokenizer from diffusers import AutoencoderKL, CogVideoXDDIMScheduler, CogView3PlusPipeline, CogView3PlusTransformer2DModel from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint from diffusers.utils.import_utils import is_accelerate_available CTX = init_empty_weights if is_accelerate_available() else nullcontext TOKENIZER_MAX_LENGTH = 224 parser = argparse.ArgumentParser() parser.add_argument("--transformer_checkpoint_path", default=None, type=str) parser.add_argument("--vae_checkpoint_path", default=None, type=str) parser.add_argument("--output_path", required=True, type=str) parser.add_argument("--push_to_hub", action="store_true", default=False, help="Whether to push to HF Hub after saving") parser.add_argument("--text_encoder_cache_dir", type=str, default=None, help="Path to text encoder cache directory") parser.add_argument("--dtype", type=str, default="bf16") args = parser.parse_args() # this is specific to `AdaLayerNormContinuous`: # diffusers implementation split the linear projection into the scale, shift while CogView3 split it tino shift, scale def swap_scale_shift(weight, dim): shift, scale = weight.chunk(2, dim=0) new_weight = torch.cat([scale, shift], dim=0) return new_weight def convert_cogview3_transformer_checkpoint_to_diffusers(ckpt_path): original_state_dict = torch.load(ckpt_path, map_location="cpu") original_state_dict = original_state_dict["module"] original_state_dict = {k.replace("model.diffusion_model.", ""): v for k, v in original_state_dict.items()} new_state_dict = {} # Convert patch_embed new_state_dict["patch_embed.proj.weight"] = original_state_dict.pop("mixins.patch_embed.proj.weight") new_state_dict["patch_embed.proj.bias"] = original_state_dict.pop("mixins.patch_embed.proj.bias") new_state_dict["patch_embed.text_proj.weight"] = original_state_dict.pop("mixins.patch_embed.text_proj.weight") new_state_dict["patch_embed.text_proj.bias"] = original_state_dict.pop("mixins.patch_embed.text_proj.bias") # Convert time_condition_embed new_state_dict["time_condition_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop( "time_embed.0.weight" ) new_state_dict["time_condition_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop( "time_embed.0.bias" ) new_state_dict["time_condition_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop( "time_embed.2.weight" ) new_state_dict["time_condition_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop( "time_embed.2.bias" ) new_state_dict["time_condition_embed.condition_embedder.linear_1.weight"] = original_state_dict.pop( "label_emb.0.0.weight" ) new_state_dict["time_condition_embed.condition_embedder.linear_1.bias"] = original_state_dict.pop( "label_emb.0.0.bias" ) new_state_dict["time_condition_embed.condition_embedder.linear_2.weight"] = original_state_dict.pop( "label_emb.0.2.weight" ) new_state_dict["time_condition_embed.condition_embedder.linear_2.bias"] = original_state_dict.pop( "label_emb.0.2.bias" ) # Convert transformer blocks for i in range(30): block_prefix = f"transformer_blocks.{i}." old_prefix = f"transformer.layers.{i}." adaln_prefix = f"mixins.adaln.adaln_modules.{i}." new_state_dict[block_prefix + "norm1.linear.weight"] = original_state_dict.pop(adaln_prefix + "1.weight") new_state_dict[block_prefix + "norm1.linear.bias"] = original_state_dict.pop(adaln_prefix + "1.bias") qkv_weight = original_state_dict.pop(old_prefix + "attention.query_key_value.weight") qkv_bias = original_state_dict.pop(old_prefix + "attention.query_key_value.bias") q, k, v = qkv_weight.chunk(3, dim=0) q_bias, k_bias, v_bias = qkv_bias.chunk(3, dim=0) new_state_dict[block_prefix + "attn1.to_q.weight"] = q new_state_dict[block_prefix + "attn1.to_q.bias"] = q_bias new_state_dict[block_prefix + "attn1.to_k.weight"] = k new_state_dict[block_prefix + "attn1.to_k.bias"] = k_bias new_state_dict[block_prefix + "attn1.to_v.weight"] = v new_state_dict[block_prefix + "attn1.to_v.bias"] = v_bias new_state_dict[block_prefix + "attn1.to_out.0.weight"] = original_state_dict.pop( old_prefix + "attention.dense.weight" ) new_state_dict[block_prefix + "attn1.to_out.0.bias"] = original_state_dict.pop( old_prefix + "attention.dense.bias" ) new_state_dict[block_prefix + "ff.net.0.proj.weight"] = original_state_dict.pop( old_prefix + "mlp.dense_h_to_4h.weight" ) new_state_dict[block_prefix + "ff.net.0.proj.bias"] = original_state_dict.pop( old_prefix + "mlp.dense_h_to_4h.bias" ) new_state_dict[block_prefix + "ff.net.2.weight"] = original_state_dict.pop( old_prefix + "mlp.dense_4h_to_h.weight" ) new_state_dict[block_prefix + "ff.net.2.bias"] = original_state_dict.pop(old_prefix + "mlp.dense_4h_to_h.bias") # Convert final norm and projection new_state_dict["norm_out.linear.weight"] = swap_scale_shift( original_state_dict.pop("mixins.final_layer.adaln.1.weight"), dim=0 ) new_state_dict["norm_out.linear.bias"] = swap_scale_shift( original_state_dict.pop("mixins.final_layer.adaln.1.bias"), dim=0 ) new_state_dict["proj_out.weight"] = original_state_dict.pop("mixins.final_layer.linear.weight") new_state_dict["proj_out.bias"] = original_state_dict.pop("mixins.final_layer.linear.bias") return new_state_dict def convert_cogview3_vae_checkpoint_to_diffusers(ckpt_path, vae_config): original_state_dict = torch.load(ckpt_path, map_location="cpu")["state_dict"] return convert_ldm_vae_checkpoint(original_state_dict, vae_config) def main(args): if args.dtype == "fp16": dtype = torch.float16 elif args.dtype == "bf16": dtype = torch.bfloat16 elif args.dtype == "fp32": dtype = torch.float32 else: raise ValueError(f"Unsupported dtype: {args.dtype}") transformer = None vae = None if args.transformer_checkpoint_path is not None: converted_transformer_state_dict = convert_cogview3_transformer_checkpoint_to_diffusers( args.transformer_checkpoint_path ) transformer = CogView3PlusTransformer2DModel() transformer.load_state_dict(converted_transformer_state_dict, strict=True) if dtype is not None: # Original checkpoint data type will be preserved transformer = transformer.to(dtype=dtype) if args.vae_checkpoint_path is not None: vae_config = { "in_channels": 3, "out_channels": 3, "down_block_types": ("DownEncoderBlock2D",) * 4, "up_block_types": ("UpDecoderBlock2D",) * 4, "block_out_channels": (128, 512, 1024, 1024), "layers_per_block": 3, "act_fn": "silu", "latent_channels": 16, "norm_num_groups": 32, "sample_size": 1024, "scaling_factor": 1.0, "force_upcast": True, "use_quant_conv": False, "use_post_quant_conv": False, "mid_block_add_attention": False, } converted_vae_state_dict = convert_cogview3_vae_checkpoint_to_diffusers(args.vae_checkpoint_path, vae_config) vae = AutoencoderKL(**vae_config) vae.load_state_dict(converted_vae_state_dict, strict=True) if dtype is not None: vae = vae.to(dtype=dtype) text_encoder_id = "google/t5-v1_1-xxl" tokenizer = T5Tokenizer.from_pretrained(text_encoder_id, model_max_length=TOKENIZER_MAX_LENGTH) text_encoder = T5EncoderModel.from_pretrained(text_encoder_id, cache_dir=args.text_encoder_cache_dir) # Apparently, the conversion does not work anymore without this :shrug: for param in text_encoder.parameters(): param.data = param.data.contiguous() scheduler = CogVideoXDDIMScheduler.from_config( { "snr_shift_scale": 4.0, "beta_end": 0.012, "beta_schedule": "scaled_linear", "beta_start": 0.00085, "clip_sample": False, "num_train_timesteps": 1000, "prediction_type": "v_prediction", "rescale_betas_zero_snr": True, "set_alpha_to_one": True, "timestep_spacing": "trailing", } ) pipe = CogView3PlusPipeline( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler, ) # This is necessary for users with insufficient memory, such as those using Colab and notebooks, as it can # save some memory used for model loading. pipe.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB", push_to_hub=args.push_to_hub) if __name__ == "__main__": main(args)