|
""" |
|
Convert a CogView3 checkpoint to the Diffusers format. |
|
|
|
This script converts a CogView3 checkpoint to the Diffusers format, which can then be used |
|
with the Diffusers library. |
|
|
|
Example usage: |
|
python scripts/convert_cogview3_to_diffusers.py \ |
|
--transformer_checkpoint_path 'your path/cogview3plus_3b/1/mp_rank_00_model_states.pt' \ |
|
--vae_checkpoint_path 'your path/3plus_ae/imagekl_ch16.pt' \ |
|
--output_path "/raid/yiyi/cogview3_diffusers" \ |
|
--dtype "bf16" |
|
|
|
Arguments: |
|
--transformer_checkpoint_path: Path to Transformer state dict. |
|
--vae_checkpoint_path: Path to VAE state dict. |
|
--output_path: The path to save the converted model. |
|
--push_to_hub: Whether to push the converted checkpoint to the HF Hub or not. Defaults to `False`. |
|
--text_encoder_cache_dir: Cache directory where text encoder is located. Defaults to None, which means HF_HOME will be used |
|
--dtype: The dtype to save the model in (default: "bf16", options: "fp16", "bf16", "fp32"). If None, the dtype of the state dict is considered. |
|
|
|
Default is "bf16" because CogView3 uses bfloat16 for Training. |
|
|
|
Note: You must provide either --original_state_dict_repo_id or --checkpoint_path. |
|
""" |
|
|
|
import argparse |
|
from contextlib import nullcontext |
|
|
|
import torch |
|
from accelerate import init_empty_weights |
|
from transformers import T5EncoderModel, T5Tokenizer |
|
|
|
from diffusers import AutoencoderKL, CogVideoXDDIMScheduler, CogView3PlusPipeline, CogView3PlusTransformer2DModel |
|
from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint |
|
from diffusers.utils.import_utils import is_accelerate_available |
|
|
|
|
|
CTX = init_empty_weights if is_accelerate_available() else nullcontext |
|
|
|
TOKENIZER_MAX_LENGTH = 224 |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--transformer_checkpoint_path", default=None, type=str) |
|
parser.add_argument("--vae_checkpoint_path", default=None, type=str) |
|
parser.add_argument("--output_path", required=True, type=str) |
|
parser.add_argument("--push_to_hub", action="store_true", default=False, help="Whether to push to HF Hub after saving") |
|
parser.add_argument("--text_encoder_cache_dir", type=str, default=None, help="Path to text encoder cache directory") |
|
parser.add_argument("--dtype", type=str, default="bf16") |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
|
def swap_scale_shift(weight, dim): |
|
shift, scale = weight.chunk(2, dim=0) |
|
new_weight = torch.cat([scale, shift], dim=0) |
|
return new_weight |
|
|
|
|
|
def convert_cogview3_transformer_checkpoint_to_diffusers(ckpt_path): |
|
original_state_dict = torch.load(ckpt_path, map_location="cpu") |
|
original_state_dict = original_state_dict["module"] |
|
original_state_dict = {k.replace("model.diffusion_model.", ""): v for k, v in original_state_dict.items()} |
|
|
|
new_state_dict = {} |
|
|
|
|
|
new_state_dict["patch_embed.proj.weight"] = original_state_dict.pop("mixins.patch_embed.proj.weight") |
|
new_state_dict["patch_embed.proj.bias"] = original_state_dict.pop("mixins.patch_embed.proj.bias") |
|
new_state_dict["patch_embed.text_proj.weight"] = original_state_dict.pop("mixins.patch_embed.text_proj.weight") |
|
new_state_dict["patch_embed.text_proj.bias"] = original_state_dict.pop("mixins.patch_embed.text_proj.bias") |
|
|
|
|
|
new_state_dict["time_condition_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop( |
|
"time_embed.0.weight" |
|
) |
|
new_state_dict["time_condition_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop( |
|
"time_embed.0.bias" |
|
) |
|
new_state_dict["time_condition_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop( |
|
"time_embed.2.weight" |
|
) |
|
new_state_dict["time_condition_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop( |
|
"time_embed.2.bias" |
|
) |
|
new_state_dict["time_condition_embed.condition_embedder.linear_1.weight"] = original_state_dict.pop( |
|
"label_emb.0.0.weight" |
|
) |
|
new_state_dict["time_condition_embed.condition_embedder.linear_1.bias"] = original_state_dict.pop( |
|
"label_emb.0.0.bias" |
|
) |
|
new_state_dict["time_condition_embed.condition_embedder.linear_2.weight"] = original_state_dict.pop( |
|
"label_emb.0.2.weight" |
|
) |
|
new_state_dict["time_condition_embed.condition_embedder.linear_2.bias"] = original_state_dict.pop( |
|
"label_emb.0.2.bias" |
|
) |
|
|
|
|
|
for i in range(30): |
|
block_prefix = f"transformer_blocks.{i}." |
|
old_prefix = f"transformer.layers.{i}." |
|
adaln_prefix = f"mixins.adaln.adaln_modules.{i}." |
|
|
|
new_state_dict[block_prefix + "norm1.linear.weight"] = original_state_dict.pop(adaln_prefix + "1.weight") |
|
new_state_dict[block_prefix + "norm1.linear.bias"] = original_state_dict.pop(adaln_prefix + "1.bias") |
|
|
|
qkv_weight = original_state_dict.pop(old_prefix + "attention.query_key_value.weight") |
|
qkv_bias = original_state_dict.pop(old_prefix + "attention.query_key_value.bias") |
|
q, k, v = qkv_weight.chunk(3, dim=0) |
|
q_bias, k_bias, v_bias = qkv_bias.chunk(3, dim=0) |
|
|
|
new_state_dict[block_prefix + "attn1.to_q.weight"] = q |
|
new_state_dict[block_prefix + "attn1.to_q.bias"] = q_bias |
|
new_state_dict[block_prefix + "attn1.to_k.weight"] = k |
|
new_state_dict[block_prefix + "attn1.to_k.bias"] = k_bias |
|
new_state_dict[block_prefix + "attn1.to_v.weight"] = v |
|
new_state_dict[block_prefix + "attn1.to_v.bias"] = v_bias |
|
|
|
new_state_dict[block_prefix + "attn1.to_out.0.weight"] = original_state_dict.pop( |
|
old_prefix + "attention.dense.weight" |
|
) |
|
new_state_dict[block_prefix + "attn1.to_out.0.bias"] = original_state_dict.pop( |
|
old_prefix + "attention.dense.bias" |
|
) |
|
|
|
new_state_dict[block_prefix + "ff.net.0.proj.weight"] = original_state_dict.pop( |
|
old_prefix + "mlp.dense_h_to_4h.weight" |
|
) |
|
new_state_dict[block_prefix + "ff.net.0.proj.bias"] = original_state_dict.pop( |
|
old_prefix + "mlp.dense_h_to_4h.bias" |
|
) |
|
new_state_dict[block_prefix + "ff.net.2.weight"] = original_state_dict.pop( |
|
old_prefix + "mlp.dense_4h_to_h.weight" |
|
) |
|
new_state_dict[block_prefix + "ff.net.2.bias"] = original_state_dict.pop(old_prefix + "mlp.dense_4h_to_h.bias") |
|
|
|
|
|
new_state_dict["norm_out.linear.weight"] = swap_scale_shift( |
|
original_state_dict.pop("mixins.final_layer.adaln.1.weight"), dim=0 |
|
) |
|
new_state_dict["norm_out.linear.bias"] = swap_scale_shift( |
|
original_state_dict.pop("mixins.final_layer.adaln.1.bias"), dim=0 |
|
) |
|
new_state_dict["proj_out.weight"] = original_state_dict.pop("mixins.final_layer.linear.weight") |
|
new_state_dict["proj_out.bias"] = original_state_dict.pop("mixins.final_layer.linear.bias") |
|
|
|
return new_state_dict |
|
|
|
|
|
def convert_cogview3_vae_checkpoint_to_diffusers(ckpt_path, vae_config): |
|
original_state_dict = torch.load(ckpt_path, map_location="cpu")["state_dict"] |
|
return convert_ldm_vae_checkpoint(original_state_dict, vae_config) |
|
|
|
|
|
def main(args): |
|
if args.dtype == "fp16": |
|
dtype = torch.float16 |
|
elif args.dtype == "bf16": |
|
dtype = torch.bfloat16 |
|
elif args.dtype == "fp32": |
|
dtype = torch.float32 |
|
else: |
|
raise ValueError(f"Unsupported dtype: {args.dtype}") |
|
|
|
transformer = None |
|
vae = None |
|
|
|
if args.transformer_checkpoint_path is not None: |
|
converted_transformer_state_dict = convert_cogview3_transformer_checkpoint_to_diffusers( |
|
args.transformer_checkpoint_path |
|
) |
|
transformer = CogView3PlusTransformer2DModel() |
|
transformer.load_state_dict(converted_transformer_state_dict, strict=True) |
|
if dtype is not None: |
|
|
|
transformer = transformer.to(dtype=dtype) |
|
|
|
if args.vae_checkpoint_path is not None: |
|
vae_config = { |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"down_block_types": ("DownEncoderBlock2D",) * 4, |
|
"up_block_types": ("UpDecoderBlock2D",) * 4, |
|
"block_out_channels": (128, 512, 1024, 1024), |
|
"layers_per_block": 3, |
|
"act_fn": "silu", |
|
"latent_channels": 16, |
|
"norm_num_groups": 32, |
|
"sample_size": 1024, |
|
"scaling_factor": 1.0, |
|
"force_upcast": True, |
|
"use_quant_conv": False, |
|
"use_post_quant_conv": False, |
|
"mid_block_add_attention": False, |
|
} |
|
converted_vae_state_dict = convert_cogview3_vae_checkpoint_to_diffusers(args.vae_checkpoint_path, vae_config) |
|
vae = AutoencoderKL(**vae_config) |
|
vae.load_state_dict(converted_vae_state_dict, strict=True) |
|
if dtype is not None: |
|
vae = vae.to(dtype=dtype) |
|
|
|
text_encoder_id = "google/t5-v1_1-xxl" |
|
tokenizer = T5Tokenizer.from_pretrained(text_encoder_id, model_max_length=TOKENIZER_MAX_LENGTH) |
|
text_encoder = T5EncoderModel.from_pretrained(text_encoder_id, cache_dir=args.text_encoder_cache_dir) |
|
|
|
|
|
for param in text_encoder.parameters(): |
|
param.data = param.data.contiguous() |
|
|
|
scheduler = CogVideoXDDIMScheduler.from_config( |
|
{ |
|
"snr_shift_scale": 4.0, |
|
"beta_end": 0.012, |
|
"beta_schedule": "scaled_linear", |
|
"beta_start": 0.00085, |
|
"clip_sample": False, |
|
"num_train_timesteps": 1000, |
|
"prediction_type": "v_prediction", |
|
"rescale_betas_zero_snr": True, |
|
"set_alpha_to_one": True, |
|
"timestep_spacing": "trailing", |
|
} |
|
) |
|
|
|
pipe = CogView3PlusPipeline( |
|
tokenizer=tokenizer, |
|
text_encoder=text_encoder, |
|
vae=vae, |
|
transformer=transformer, |
|
scheduler=scheduler, |
|
) |
|
|
|
|
|
|
|
pipe.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB", push_to_hub=args.push_to_hub) |
|
|
|
|
|
if __name__ == "__main__": |
|
main(args) |
|
|