|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import logging |
|
import math |
|
import os |
|
import shutil |
|
from pathlib import Path |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as TT |
|
import transformers |
|
from accelerate import Accelerator, DistributedType |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed |
|
from huggingface_hub import create_repo, upload_folder |
|
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict |
|
from torch.utils.data import DataLoader, Dataset |
|
from torchvision.transforms import InterpolationMode |
|
from torchvision.transforms.functional import resize |
|
from tqdm.auto import tqdm |
|
from transformers import AutoTokenizer, T5EncoderModel, T5Tokenizer |
|
|
|
import diffusers |
|
from diffusers import AutoencoderKLCogVideoX, CogVideoXDPMScheduler, CogVideoXPipeline, CogVideoXTransformer3DModel |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.models.embeddings import get_3d_rotary_pos_embed |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.pipelines.cogvideo.pipeline_cogvideox import get_resize_crop_region_for_grid |
|
from diffusers.training_utils import cast_training_params, free_memory |
|
from diffusers.utils import check_min_version, convert_unet_state_dict_to_peft, export_to_video, is_wandb_available |
|
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card |
|
from diffusers.utils.torch_utils import is_compiled_module |
|
|
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
|
|
check_min_version("0.32.0.dev0") |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script for CogVideoX.") |
|
|
|
|
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--variant", |
|
type=str, |
|
default=None, |
|
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--dataset_name", |
|
type=str, |
|
default=None, |
|
help=( |
|
"The name of the Dataset (from the HuggingFace hub) containing the training data of instance images (could be your own, possibly private," |
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," |
|
" or to a folder containing files that 🤗 Datasets can understand." |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataset_config_name", |
|
type=str, |
|
default=None, |
|
help="The config of the Dataset, leave as None if there's only one config.", |
|
) |
|
parser.add_argument( |
|
"--instance_data_root", |
|
type=str, |
|
default=None, |
|
help=("A folder containing the training data."), |
|
) |
|
parser.add_argument( |
|
"--video_column", |
|
type=str, |
|
default="video", |
|
help="The column of the dataset containing videos. Or, the name of the file in `--instance_data_root` folder containing the line-separated path to video data.", |
|
) |
|
parser.add_argument( |
|
"--caption_column", |
|
type=str, |
|
default="text", |
|
help="The column of the dataset containing the instance prompt for each video. Or, the name of the file in `--instance_data_root` folder containing the line-separated instance prompts.", |
|
) |
|
parser.add_argument( |
|
"--id_token", type=str, default=None, help="Identifier token appended to the start of each prompt if provided." |
|
) |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--validation_prompt", |
|
type=str, |
|
default=None, |
|
help="One or more prompt(s) that is used during validation to verify that the model is learning. Multiple validation prompts should be separated by the '--validation_prompt_seperator' string.", |
|
) |
|
parser.add_argument( |
|
"--validation_prompt_separator", |
|
type=str, |
|
default=":::", |
|
help="String that separates multiple validation prompts", |
|
) |
|
parser.add_argument( |
|
"--num_validation_videos", |
|
type=int, |
|
default=1, |
|
help="Number of videos that should be generated during validation per `validation_prompt`.", |
|
) |
|
parser.add_argument( |
|
"--validation_epochs", |
|
type=int, |
|
default=50, |
|
help=( |
|
"Run validation every X epochs. Validation consists of running the prompt `args.validation_prompt` multiple times: `args.num_validation_videos`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--guidance_scale", |
|
type=float, |
|
default=6, |
|
help="The guidance scale to use while sampling validation videos.", |
|
) |
|
parser.add_argument( |
|
"--use_dynamic_cfg", |
|
action="store_true", |
|
default=False, |
|
help="Whether or not to use the default cosine dynamic guidance schedule when sampling validation videos.", |
|
) |
|
|
|
|
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--rank", |
|
type=int, |
|
default=128, |
|
help=("The dimension of the LoRA update matrices."), |
|
) |
|
parser.add_argument( |
|
"--lora_alpha", |
|
type=float, |
|
default=128, |
|
help=("The scaling factor to scale LoRA weight update. The actual scaling factor is `lora_alpha / rank`"), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="cogvideox-lora", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument( |
|
"--height", |
|
type=int, |
|
default=480, |
|
help="All input videos are resized to this height.", |
|
) |
|
parser.add_argument( |
|
"--width", |
|
type=int, |
|
default=720, |
|
help="All input videos are resized to this width.", |
|
) |
|
parser.add_argument( |
|
"--video_reshape_mode", |
|
type=str, |
|
default="center", |
|
help="All input videos are reshaped to this mode. Choose between ['center', 'random', 'none']", |
|
) |
|
parser.add_argument("--fps", type=int, default=8, help="All input videos will be used at this FPS.") |
|
parser.add_argument( |
|
"--max_num_frames", type=int, default=49, help="All input videos will be truncated to these many frames." |
|
) |
|
parser.add_argument( |
|
"--skip_frames_start", |
|
type=int, |
|
default=0, |
|
help="Number of frames to skip from the beginning of each input video. Useful if training data contains intro sequences.", |
|
) |
|
parser.add_argument( |
|
"--skip_frames_end", |
|
type=int, |
|
default=0, |
|
help="Number of frames to skip from the end of each input video. Useful if training data contains outro sequences.", |
|
) |
|
parser.add_argument( |
|
"--random_flip", |
|
action="store_true", |
|
help="whether to randomly flip videos horizontally", |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=1) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides `--num_train_epochs`.", |
|
) |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" |
|
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" |
|
" training using `--resume_from_checkpoint`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=None, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--lr_num_cycles", |
|
type=int, |
|
default=1, |
|
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", |
|
) |
|
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") |
|
parser.add_argument( |
|
"--enable_slicing", |
|
action="store_true", |
|
default=False, |
|
help="Whether or not to use VAE slicing for saving memory.", |
|
) |
|
parser.add_argument( |
|
"--enable_tiling", |
|
action="store_true", |
|
default=False, |
|
help="Whether or not to use VAE tiling for saving memory.", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--optimizer", |
|
type=lambda s: s.lower(), |
|
default="adam", |
|
choices=["adam", "adamw", "prodigy"], |
|
help=("The optimizer type to use."), |
|
) |
|
parser.add_argument( |
|
"--use_8bit_adam", |
|
action="store_true", |
|
help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW", |
|
) |
|
parser.add_argument( |
|
"--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers." |
|
) |
|
parser.add_argument( |
|
"--adam_beta2", type=float, default=0.95, help="The beta2 parameter for the Adam and Prodigy optimizers." |
|
) |
|
parser.add_argument( |
|
"--prodigy_beta3", |
|
type=float, |
|
default=None, |
|
help="Coefficients for computing the Prodigy optimizer's stepsize using running averages. If set to None, uses the value of square root of beta2.", |
|
) |
|
parser.add_argument("--prodigy_decouple", action="store_true", help="Use AdamW style decoupled weight decay") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params") |
|
parser.add_argument( |
|
"--adam_epsilon", |
|
type=float, |
|
default=1e-08, |
|
help="Epsilon value for the Adam optimizer and Prodigy optimizers.", |
|
) |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--prodigy_use_bias_correction", action="store_true", help="Turn on Adam's bias correction.") |
|
parser.add_argument( |
|
"--prodigy_safeguard_warmup", |
|
action="store_true", |
|
help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage.", |
|
) |
|
|
|
|
|
parser.add_argument("--tracker_name", type=str, default=None, help="Project tracker name") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help="Directory where logs are stored.", |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default=None, |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
|
|
return parser.parse_args() |
|
|
|
|
|
class VideoDataset(Dataset): |
|
def __init__( |
|
self, |
|
instance_data_root: Optional[str] = None, |
|
dataset_name: Optional[str] = None, |
|
dataset_config_name: Optional[str] = None, |
|
caption_column: str = "text", |
|
video_column: str = "video", |
|
height: int = 480, |
|
width: int = 720, |
|
video_reshape_mode: str = "center", |
|
fps: int = 8, |
|
max_num_frames: int = 49, |
|
skip_frames_start: int = 0, |
|
skip_frames_end: int = 0, |
|
cache_dir: Optional[str] = None, |
|
id_token: Optional[str] = None, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.instance_data_root = Path(instance_data_root) if instance_data_root is not None else None |
|
self.dataset_name = dataset_name |
|
self.dataset_config_name = dataset_config_name |
|
self.caption_column = caption_column |
|
self.video_column = video_column |
|
self.height = height |
|
self.width = width |
|
self.video_reshape_mode = video_reshape_mode |
|
self.fps = fps |
|
self.max_num_frames = max_num_frames |
|
self.skip_frames_start = skip_frames_start |
|
self.skip_frames_end = skip_frames_end |
|
self.cache_dir = cache_dir |
|
self.id_token = id_token or "" |
|
|
|
if dataset_name is not None: |
|
self.instance_prompts, self.instance_video_paths = self._load_dataset_from_hub() |
|
else: |
|
self.instance_prompts, self.instance_video_paths = self._load_dataset_from_local_path() |
|
|
|
self.num_instance_videos = len(self.instance_video_paths) |
|
if self.num_instance_videos != len(self.instance_prompts): |
|
raise ValueError( |
|
f"Expected length of instance prompts and videos to be the same but found {len(self.instance_prompts)=} and {len(self.instance_video_paths)=}. Please ensure that the number of caption prompts and videos match in your dataset." |
|
) |
|
|
|
self.instance_videos = self._preprocess_data() |
|
|
|
def __len__(self): |
|
return self.num_instance_videos |
|
|
|
def __getitem__(self, index): |
|
return { |
|
"instance_prompt": self.id_token + self.instance_prompts[index], |
|
"instance_video": self.instance_videos[index], |
|
} |
|
|
|
def _load_dataset_from_hub(self): |
|
try: |
|
from datasets import load_dataset |
|
except ImportError: |
|
raise ImportError( |
|
"You are trying to load your data using the datasets library. If you wish to train using custom " |
|
"captions please install the datasets library: `pip install datasets`. If you wish to load a " |
|
"local folder containing images only, specify --instance_data_root instead." |
|
) |
|
|
|
|
|
|
|
dataset = load_dataset( |
|
self.dataset_name, |
|
self.dataset_config_name, |
|
cache_dir=self.cache_dir, |
|
) |
|
column_names = dataset["train"].column_names |
|
|
|
if self.video_column is None: |
|
video_column = column_names[0] |
|
logger.info(f"`video_column` defaulting to {video_column}") |
|
else: |
|
video_column = self.video_column |
|
if video_column not in column_names: |
|
raise ValueError( |
|
f"`--video_column` value '{video_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" |
|
) |
|
|
|
if self.caption_column is None: |
|
caption_column = column_names[1] |
|
logger.info(f"`caption_column` defaulting to {caption_column}") |
|
else: |
|
caption_column = self.caption_column |
|
if self.caption_column not in column_names: |
|
raise ValueError( |
|
f"`--caption_column` value '{self.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" |
|
) |
|
|
|
instance_prompts = dataset["train"][caption_column] |
|
instance_videos = [Path(self.instance_data_root, filepath) for filepath in dataset["train"][video_column]] |
|
|
|
return instance_prompts, instance_videos |
|
|
|
def _load_dataset_from_local_path(self): |
|
if not self.instance_data_root.exists(): |
|
raise ValueError("Instance videos root folder does not exist") |
|
|
|
prompt_path = self.instance_data_root.joinpath(self.caption_column) |
|
video_path = self.instance_data_root.joinpath(self.video_column) |
|
|
|
if not prompt_path.exists() or not prompt_path.is_file(): |
|
raise ValueError( |
|
"Expected `--caption_column` to be path to a file in `--instance_data_root` containing line-separated text prompts." |
|
) |
|
if not video_path.exists() or not video_path.is_file(): |
|
raise ValueError( |
|
"Expected `--video_column` to be path to a file in `--instance_data_root` containing line-separated paths to video data in the same directory." |
|
) |
|
|
|
with open(prompt_path, "r", encoding="utf-8") as file: |
|
instance_prompts = [line.strip() for line in file.readlines() if len(line.strip()) > 0] |
|
with open(video_path, "r", encoding="utf-8") as file: |
|
instance_videos = [ |
|
self.instance_data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0 |
|
] |
|
|
|
if any(not path.is_file() for path in instance_videos): |
|
raise ValueError( |
|
"Expected '--video_column' to be a path to a file in `--instance_data_root` containing line-separated paths to video data but found atleast one path that is not a valid file." |
|
) |
|
|
|
return instance_prompts, instance_videos |
|
|
|
def _resize_for_rectangle_crop(self, arr): |
|
image_size = self.height, self.width |
|
reshape_mode = self.video_reshape_mode |
|
if arr.shape[3] / arr.shape[2] > image_size[1] / image_size[0]: |
|
arr = resize( |
|
arr, |
|
size=[image_size[0], int(arr.shape[3] * image_size[0] / arr.shape[2])], |
|
interpolation=InterpolationMode.BICUBIC, |
|
) |
|
else: |
|
arr = resize( |
|
arr, |
|
size=[int(arr.shape[2] * image_size[1] / arr.shape[3]), image_size[1]], |
|
interpolation=InterpolationMode.BICUBIC, |
|
) |
|
|
|
h, w = arr.shape[2], arr.shape[3] |
|
arr = arr.squeeze(0) |
|
|
|
delta_h = h - image_size[0] |
|
delta_w = w - image_size[1] |
|
|
|
if reshape_mode == "random" or reshape_mode == "none": |
|
top = np.random.randint(0, delta_h + 1) |
|
left = np.random.randint(0, delta_w + 1) |
|
elif reshape_mode == "center": |
|
top, left = delta_h // 2, delta_w // 2 |
|
else: |
|
raise NotImplementedError |
|
arr = TT.functional.crop(arr, top=top, left=left, height=image_size[0], width=image_size[1]) |
|
return arr |
|
|
|
def _preprocess_data(self): |
|
try: |
|
import decord |
|
except ImportError: |
|
raise ImportError( |
|
"The `decord` package is required for loading the video dataset. Install with `pip install decord`" |
|
) |
|
|
|
decord.bridge.set_bridge("torch") |
|
|
|
progress_dataset_bar = tqdm( |
|
range(0, len(self.instance_video_paths)), |
|
desc="Loading progress resize and crop videos", |
|
) |
|
videos = [] |
|
|
|
for filename in self.instance_video_paths: |
|
video_reader = decord.VideoReader(uri=filename.as_posix()) |
|
video_num_frames = len(video_reader) |
|
|
|
start_frame = min(self.skip_frames_start, video_num_frames) |
|
end_frame = max(0, video_num_frames - self.skip_frames_end) |
|
if end_frame <= start_frame: |
|
frames = video_reader.get_batch([start_frame]) |
|
elif end_frame - start_frame <= self.max_num_frames: |
|
frames = video_reader.get_batch(list(range(start_frame, end_frame))) |
|
else: |
|
indices = list(range(start_frame, end_frame, (end_frame - start_frame) // self.max_num_frames)) |
|
frames = video_reader.get_batch(indices) |
|
|
|
|
|
frames = frames[: self.max_num_frames] |
|
selected_num_frames = frames.shape[0] |
|
|
|
|
|
remainder = (3 + (selected_num_frames % 4)) % 4 |
|
if remainder != 0: |
|
frames = frames[:-remainder] |
|
selected_num_frames = frames.shape[0] |
|
|
|
assert (selected_num_frames - 1) % 4 == 0 |
|
|
|
|
|
frames = (frames - 127.5) / 127.5 |
|
frames = frames.permute(0, 3, 1, 2) |
|
progress_dataset_bar.set_description( |
|
f"Loading progress Resizing video from {frames.shape[2]}x{frames.shape[3]} to {self.height}x{self.width}" |
|
) |
|
frames = self._resize_for_rectangle_crop(frames) |
|
videos.append(frames.contiguous()) |
|
progress_dataset_bar.update(1) |
|
|
|
progress_dataset_bar.close() |
|
return videos |
|
|
|
|
|
def save_model_card( |
|
repo_id: str, |
|
videos=None, |
|
base_model: str = None, |
|
validation_prompt=None, |
|
repo_folder=None, |
|
fps=8, |
|
): |
|
widget_dict = [] |
|
if videos is not None: |
|
for i, video in enumerate(videos): |
|
export_to_video(video, os.path.join(repo_folder, f"final_video_{i}.mp4", fps=fps)) |
|
widget_dict.append( |
|
{"text": validation_prompt if validation_prompt else " ", "output": {"url": f"video_{i}.mp4"}} |
|
) |
|
|
|
model_description = f""" |
|
# CogVideoX LoRA - {repo_id} |
|
|
|
<Gallery /> |
|
|
|
## Model description |
|
|
|
These are {repo_id} LoRA weights for {base_model}. |
|
|
|
The weights were trained using the [CogVideoX Diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/cogvideo/train_cogvideox_lora.py). |
|
|
|
Was LoRA for the text encoder enabled? No. |
|
|
|
## Download model |
|
|
|
[Download the *.safetensors LoRA]({repo_id}/tree/main) in the Files & versions tab. |
|
|
|
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) |
|
|
|
```py |
|
from diffusers import CogVideoXPipeline |
|
import torch |
|
|
|
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to("cuda") |
|
pipe.load_lora_weights("{repo_id}", weight_name="pytorch_lora_weights.safetensors", adapter_name=["cogvideox-lora"]) |
|
|
|
# The LoRA adapter weights are determined by what was used for training. |
|
# In this case, we assume `--lora_alpha` is 32 and `--rank` is 64. |
|
# It can be made lower or higher from what was used in training to decrease or amplify the effect |
|
# of the LoRA upto a tolerance, beyond which one might notice no effect at all or overflows. |
|
pipe.set_adapters(["cogvideox-lora"], [32 / 64]) |
|
|
|
video = pipe("{validation_prompt}", guidance_scale=6, use_dynamic_cfg=True).frames[0] |
|
``` |
|
|
|
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co./docs/diffusers/main/en/using-diffusers/loading_adapters) |
|
|
|
## License |
|
|
|
Please adhere to the licensing terms as described [here](https://huggingface.co./THUDM/CogVideoX-5b/blob/main/LICENSE) and [here](https://huggingface.co./THUDM/CogVideoX-2b/blob/main/LICENSE). |
|
""" |
|
model_card = load_or_create_model_card( |
|
repo_id_or_path=repo_id, |
|
from_training=True, |
|
license="other", |
|
base_model=base_model, |
|
prompt=validation_prompt, |
|
model_description=model_description, |
|
widget=widget_dict, |
|
) |
|
tags = [ |
|
"text-to-video", |
|
"diffusers-training", |
|
"diffusers", |
|
"lora", |
|
"cogvideox", |
|
"cogvideox-diffusers", |
|
"template:sd-lora", |
|
] |
|
|
|
model_card = populate_model_card(model_card, tags=tags) |
|
model_card.save(os.path.join(repo_folder, "README.md")) |
|
|
|
|
|
def log_validation( |
|
pipe, |
|
args, |
|
accelerator, |
|
pipeline_args, |
|
epoch, |
|
is_final_validation: bool = False, |
|
): |
|
logger.info( |
|
f"Running validation... \n Generating {args.num_validation_videos} videos with prompt: {pipeline_args['prompt']}." |
|
) |
|
|
|
scheduler_args = {} |
|
|
|
if "variance_type" in pipe.scheduler.config: |
|
variance_type = pipe.scheduler.config.variance_type |
|
|
|
if variance_type in ["learned", "learned_range"]: |
|
variance_type = "fixed_small" |
|
|
|
scheduler_args["variance_type"] = variance_type |
|
|
|
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, **scheduler_args) |
|
pipe = pipe.to(accelerator.device) |
|
|
|
|
|
|
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None |
|
|
|
videos = [] |
|
for _ in range(args.num_validation_videos): |
|
pt_images = pipe(**pipeline_args, generator=generator, output_type="pt").frames[0] |
|
pt_images = torch.stack([pt_images[i] for i in range(pt_images.shape[0])]) |
|
|
|
image_np = VaeImageProcessor.pt_to_numpy(pt_images) |
|
image_pil = VaeImageProcessor.numpy_to_pil(image_np) |
|
|
|
videos.append(image_pil) |
|
|
|
for tracker in accelerator.trackers: |
|
phase_name = "test" if is_final_validation else "validation" |
|
if tracker.name == "wandb": |
|
video_filenames = [] |
|
for i, video in enumerate(videos): |
|
prompt = ( |
|
pipeline_args["prompt"][:25] |
|
.replace(" ", "_") |
|
.replace(" ", "_") |
|
.replace("'", "_") |
|
.replace('"', "_") |
|
.replace("/", "_") |
|
) |
|
filename = os.path.join(args.output_dir, f"{phase_name}_video_{i}_{prompt}.mp4") |
|
export_to_video(video, filename, fps=8) |
|
video_filenames.append(filename) |
|
|
|
tracker.log( |
|
{ |
|
phase_name: [ |
|
wandb.Video(filename, caption=f"{i}: {pipeline_args['prompt']}") |
|
for i, filename in enumerate(video_filenames) |
|
] |
|
} |
|
) |
|
|
|
del pipe |
|
free_memory() |
|
|
|
return videos |
|
|
|
|
|
def _get_t5_prompt_embeds( |
|
tokenizer: T5Tokenizer, |
|
text_encoder: T5EncoderModel, |
|
prompt: Union[str, List[str]], |
|
num_videos_per_prompt: int = 1, |
|
max_sequence_length: int = 226, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
text_input_ids=None, |
|
): |
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
if tokenizer is not None: |
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=max_sequence_length, |
|
truncation=True, |
|
add_special_tokens=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
else: |
|
if text_input_ids is None: |
|
raise ValueError("`text_input_ids` must be provided when the tokenizer is not specified.") |
|
|
|
prompt_embeds = text_encoder(text_input_ids.to(device))[0] |
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
|
|
_, seq_len, _ = prompt_embeds.shape |
|
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) |
|
|
|
return prompt_embeds |
|
|
|
|
|
def encode_prompt( |
|
tokenizer: T5Tokenizer, |
|
text_encoder: T5EncoderModel, |
|
prompt: Union[str, List[str]], |
|
num_videos_per_prompt: int = 1, |
|
max_sequence_length: int = 226, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
text_input_ids=None, |
|
): |
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
prompt_embeds = _get_t5_prompt_embeds( |
|
tokenizer, |
|
text_encoder, |
|
prompt=prompt, |
|
num_videos_per_prompt=num_videos_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
dtype=dtype, |
|
text_input_ids=text_input_ids, |
|
) |
|
return prompt_embeds |
|
|
|
|
|
def compute_prompt_embeddings( |
|
tokenizer, text_encoder, prompt, max_sequence_length, device, dtype, requires_grad: bool = False |
|
): |
|
if requires_grad: |
|
prompt_embeds = encode_prompt( |
|
tokenizer, |
|
text_encoder, |
|
prompt, |
|
num_videos_per_prompt=1, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
else: |
|
with torch.no_grad(): |
|
prompt_embeds = encode_prompt( |
|
tokenizer, |
|
text_encoder, |
|
prompt, |
|
num_videos_per_prompt=1, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
return prompt_embeds |
|
|
|
|
|
def prepare_rotary_positional_embeddings( |
|
height: int, |
|
width: int, |
|
num_frames: int, |
|
vae_scale_factor_spatial: int = 8, |
|
patch_size: int = 2, |
|
attention_head_dim: int = 64, |
|
device: Optional[torch.device] = None, |
|
base_height: int = 480, |
|
base_width: int = 720, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
grid_height = height // (vae_scale_factor_spatial * patch_size) |
|
grid_width = width // (vae_scale_factor_spatial * patch_size) |
|
base_size_width = base_width // (vae_scale_factor_spatial * patch_size) |
|
base_size_height = base_height // (vae_scale_factor_spatial * patch_size) |
|
|
|
grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size_width, base_size_height) |
|
freqs_cos, freqs_sin = get_3d_rotary_pos_embed( |
|
embed_dim=attention_head_dim, |
|
crops_coords=grid_crops_coords, |
|
grid_size=(grid_height, grid_width), |
|
temporal_size=num_frames, |
|
device=device, |
|
) |
|
|
|
return freqs_cos, freqs_sin |
|
|
|
|
|
def get_optimizer(args, params_to_optimize, use_deepspeed: bool = False): |
|
|
|
if use_deepspeed: |
|
from accelerate.utils import DummyOptim |
|
|
|
return DummyOptim( |
|
params_to_optimize, |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
eps=args.adam_epsilon, |
|
weight_decay=args.adam_weight_decay, |
|
) |
|
|
|
|
|
supported_optimizers = ["adam", "adamw", "prodigy"] |
|
if args.optimizer not in supported_optimizers: |
|
logger.warning( |
|
f"Unsupported choice of optimizer: {args.optimizer}. Supported optimizers include {supported_optimizers}. Defaulting to AdamW" |
|
) |
|
args.optimizer = "adamw" |
|
|
|
if args.use_8bit_adam and args.optimizer.lower() not in ["adam", "adamw"]: |
|
logger.warning( |
|
f"use_8bit_adam is ignored when optimizer is not set to 'Adam' or 'AdamW'. Optimizer was " |
|
f"set to {args.optimizer.lower()}" |
|
) |
|
|
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." |
|
) |
|
|
|
if args.optimizer.lower() == "adamw": |
|
optimizer_class = bnb.optim.AdamW8bit if args.use_8bit_adam else torch.optim.AdamW |
|
|
|
optimizer = optimizer_class( |
|
params_to_optimize, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
eps=args.adam_epsilon, |
|
weight_decay=args.adam_weight_decay, |
|
) |
|
elif args.optimizer.lower() == "adam": |
|
optimizer_class = bnb.optim.Adam8bit if args.use_8bit_adam else torch.optim.Adam |
|
|
|
optimizer = optimizer_class( |
|
params_to_optimize, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
eps=args.adam_epsilon, |
|
weight_decay=args.adam_weight_decay, |
|
) |
|
elif args.optimizer.lower() == "prodigy": |
|
try: |
|
import prodigyopt |
|
except ImportError: |
|
raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`") |
|
|
|
optimizer_class = prodigyopt.Prodigy |
|
|
|
if args.learning_rate <= 0.1: |
|
logger.warning( |
|
"Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0" |
|
) |
|
|
|
optimizer = optimizer_class( |
|
params_to_optimize, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
beta3=args.prodigy_beta3, |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
decouple=args.prodigy_decouple, |
|
use_bias_correction=args.prodigy_use_bias_correction, |
|
safeguard_warmup=args.prodigy_safeguard_warmup, |
|
) |
|
|
|
return optimizer |
|
|
|
|
|
def main(args): |
|
if args.report_to == "wandb" and args.hub_token is not None: |
|
raise ValueError( |
|
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." |
|
" Please use `huggingface-cli login` to authenticate with the Hub." |
|
) |
|
|
|
if torch.backends.mps.is_available() and args.mixed_precision == "bf16": |
|
|
|
raise ValueError( |
|
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." |
|
) |
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) |
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_config=accelerator_project_config, |
|
kwargs_handlers=[kwargs], |
|
) |
|
|
|
|
|
if torch.backends.mps.is_available(): |
|
accelerator.native_amp = False |
|
|
|
if args.report_to == "wandb": |
|
if not is_wandb_available(): |
|
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
if args.push_to_hub: |
|
repo_id = create_repo( |
|
repo_id=args.hub_model_id or Path(args.output_dir).name, |
|
exist_ok=True, |
|
).repo_id |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision |
|
) |
|
|
|
text_encoder = T5EncoderModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision |
|
) |
|
|
|
|
|
|
|
load_dtype = torch.bfloat16 if "5b" in args.pretrained_model_name_or_path.lower() else torch.float16 |
|
transformer = CogVideoXTransformer3DModel.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="transformer", |
|
torch_dtype=load_dtype, |
|
revision=args.revision, |
|
variant=args.variant, |
|
) |
|
|
|
vae = AutoencoderKLCogVideoX.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant |
|
) |
|
|
|
scheduler = CogVideoXDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
|
|
if args.enable_slicing: |
|
vae.enable_slicing() |
|
if args.enable_tiling: |
|
vae.enable_tiling() |
|
|
|
|
|
text_encoder.requires_grad_(False) |
|
transformer.requires_grad_(False) |
|
vae.requires_grad_(False) |
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.state.deepspeed_plugin: |
|
|
|
if ( |
|
"fp16" in accelerator.state.deepspeed_plugin.deepspeed_config |
|
and accelerator.state.deepspeed_plugin.deepspeed_config["fp16"]["enabled"] |
|
): |
|
weight_dtype = torch.float16 |
|
if ( |
|
"bf16" in accelerator.state.deepspeed_plugin.deepspeed_config |
|
and accelerator.state.deepspeed_plugin.deepspeed_config["bf16"]["enabled"] |
|
): |
|
weight_dtype = torch.float16 |
|
else: |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16: |
|
|
|
raise ValueError( |
|
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." |
|
) |
|
|
|
text_encoder.to(accelerator.device, dtype=weight_dtype) |
|
transformer.to(accelerator.device, dtype=weight_dtype) |
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
|
|
if args.gradient_checkpointing: |
|
transformer.enable_gradient_checkpointing() |
|
|
|
|
|
transformer_lora_config = LoraConfig( |
|
r=args.rank, |
|
lora_alpha=args.lora_alpha, |
|
init_lora_weights=True, |
|
target_modules=["to_k", "to_q", "to_v", "to_out.0"], |
|
) |
|
transformer.add_adapter(transformer_lora_config) |
|
|
|
def unwrap_model(model): |
|
model = accelerator.unwrap_model(model) |
|
model = model._orig_mod if is_compiled_module(model) else model |
|
return model |
|
|
|
|
|
def save_model_hook(models, weights, output_dir): |
|
if accelerator.is_main_process: |
|
transformer_lora_layers_to_save = None |
|
|
|
for model in models: |
|
if isinstance(model, type(unwrap_model(transformer))): |
|
transformer_lora_layers_to_save = get_peft_model_state_dict(model) |
|
else: |
|
raise ValueError(f"unexpected save model: {model.__class__}") |
|
|
|
|
|
weights.pop() |
|
|
|
CogVideoXPipeline.save_lora_weights( |
|
output_dir, |
|
transformer_lora_layers=transformer_lora_layers_to_save, |
|
) |
|
|
|
def load_model_hook(models, input_dir): |
|
transformer_ = None |
|
|
|
while len(models) > 0: |
|
model = models.pop() |
|
|
|
if isinstance(model, type(unwrap_model(transformer))): |
|
transformer_ = model |
|
else: |
|
raise ValueError(f"Unexpected save model: {model.__class__}") |
|
|
|
lora_state_dict = CogVideoXPipeline.lora_state_dict(input_dir) |
|
|
|
transformer_state_dict = { |
|
f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("transformer.") |
|
} |
|
transformer_state_dict = convert_unet_state_dict_to_peft(transformer_state_dict) |
|
incompatible_keys = set_peft_model_state_dict(transformer_, transformer_state_dict, adapter_name="default") |
|
if incompatible_keys is not None: |
|
|
|
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) |
|
if unexpected_keys: |
|
logger.warning( |
|
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " |
|
f" {unexpected_keys}. " |
|
) |
|
|
|
|
|
|
|
|
|
if args.mixed_precision == "fp16": |
|
|
|
cast_training_params([transformer_]) |
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
|
|
|
|
|
|
if args.allow_tf32 and torch.cuda.is_available(): |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
|
|
if args.mixed_precision == "fp16": |
|
|
|
cast_training_params([transformer], dtype=torch.float32) |
|
|
|
transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters())) |
|
|
|
|
|
transformer_parameters_with_lr = {"params": transformer_lora_parameters, "lr": args.learning_rate} |
|
params_to_optimize = [transformer_parameters_with_lr] |
|
|
|
use_deepspeed_optimizer = ( |
|
accelerator.state.deepspeed_plugin is not None |
|
and "optimizer" in accelerator.state.deepspeed_plugin.deepspeed_config |
|
) |
|
use_deepspeed_scheduler = ( |
|
accelerator.state.deepspeed_plugin is not None |
|
and "scheduler" in accelerator.state.deepspeed_plugin.deepspeed_config |
|
) |
|
|
|
optimizer = get_optimizer(args, params_to_optimize, use_deepspeed=use_deepspeed_optimizer) |
|
|
|
|
|
train_dataset = VideoDataset( |
|
instance_data_root=args.instance_data_root, |
|
dataset_name=args.dataset_name, |
|
dataset_config_name=args.dataset_config_name, |
|
caption_column=args.caption_column, |
|
video_column=args.video_column, |
|
height=args.height, |
|
width=args.width, |
|
video_reshape_mode=args.video_reshape_mode, |
|
fps=args.fps, |
|
max_num_frames=args.max_num_frames, |
|
skip_frames_start=args.skip_frames_start, |
|
skip_frames_end=args.skip_frames_end, |
|
cache_dir=args.cache_dir, |
|
id_token=args.id_token, |
|
) |
|
|
|
def encode_video(video, bar): |
|
bar.update(1) |
|
video = video.to(accelerator.device, dtype=vae.dtype).unsqueeze(0) |
|
video = video.permute(0, 2, 1, 3, 4) |
|
latent_dist = vae.encode(video).latent_dist |
|
return latent_dist |
|
|
|
progress_encode_bar = tqdm( |
|
range(0, len(train_dataset.instance_videos)), |
|
desc="Loading Encode videos", |
|
) |
|
train_dataset.instance_videos = [ |
|
encode_video(video, progress_encode_bar) for video in train_dataset.instance_videos |
|
] |
|
progress_encode_bar.close() |
|
|
|
def collate_fn(examples): |
|
videos = [example["instance_video"].sample() * vae.config.scaling_factor for example in examples] |
|
prompts = [example["instance_prompt"] for example in examples] |
|
|
|
videos = torch.cat(videos) |
|
videos = videos.permute(0, 2, 1, 3, 4) |
|
videos = videos.to(memory_format=torch.contiguous_format).float() |
|
|
|
return { |
|
"videos": videos, |
|
"prompts": prompts, |
|
} |
|
|
|
train_dataloader = DataLoader( |
|
train_dataset, |
|
batch_size=args.train_batch_size, |
|
shuffle=True, |
|
collate_fn=collate_fn, |
|
num_workers=args.dataloader_num_workers, |
|
) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
if use_deepspeed_scheduler: |
|
from accelerate.utils import DummyScheduler |
|
|
|
lr_scheduler = DummyScheduler( |
|
name=args.lr_scheduler, |
|
optimizer=optimizer, |
|
total_num_steps=args.max_train_steps * accelerator.num_processes, |
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, |
|
) |
|
else: |
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, |
|
num_training_steps=args.max_train_steps * accelerator.num_processes, |
|
num_cycles=args.lr_num_cycles, |
|
power=args.lr_power, |
|
) |
|
|
|
|
|
transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
transformer, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
tracker_name = args.tracker_name or "cogvideox-lora" |
|
accelerator.init_trackers(tracker_name, config=vars(args)) |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
num_trainable_parameters = sum(param.numel() for model in params_to_optimize for param in model["params"]) |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num trainable parameters = {num_trainable_parameters}") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}") |
|
logger.info(f" Num epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if not args.resume_from_checkpoint: |
|
initial_global_step = 0 |
|
else: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
initial_global_step = 0 |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
global_step = int(path.split("-")[1]) |
|
|
|
initial_global_step = global_step |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
|
|
progress_bar = tqdm( |
|
range(0, args.max_train_steps), |
|
initial=initial_global_step, |
|
desc="Steps", |
|
|
|
disable=not accelerator.is_local_main_process, |
|
) |
|
vae_scale_factor_spatial = 2 ** (len(vae.config.block_out_channels) - 1) |
|
|
|
|
|
model_config = transformer.module.config if hasattr(transformer, "module") else transformer.config |
|
|
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
transformer.train() |
|
|
|
for step, batch in enumerate(train_dataloader): |
|
models_to_accumulate = [transformer] |
|
|
|
with accelerator.accumulate(models_to_accumulate): |
|
model_input = batch["videos"].to(dtype=weight_dtype) |
|
prompts = batch["prompts"] |
|
|
|
|
|
prompt_embeds = compute_prompt_embeddings( |
|
tokenizer, |
|
text_encoder, |
|
prompts, |
|
model_config.max_text_seq_length, |
|
accelerator.device, |
|
weight_dtype, |
|
requires_grad=False, |
|
) |
|
|
|
|
|
noise = torch.randn_like(model_input) |
|
batch_size, num_frames, num_channels, height, width = model_input.shape |
|
|
|
|
|
timesteps = torch.randint( |
|
0, scheduler.config.num_train_timesteps, (batch_size,), device=model_input.device |
|
) |
|
timesteps = timesteps.long() |
|
|
|
|
|
image_rotary_emb = ( |
|
prepare_rotary_positional_embeddings( |
|
height=args.height, |
|
width=args.width, |
|
num_frames=num_frames, |
|
vae_scale_factor_spatial=vae_scale_factor_spatial, |
|
patch_size=model_config.patch_size, |
|
attention_head_dim=model_config.attention_head_dim, |
|
device=accelerator.device, |
|
) |
|
if model_config.use_rotary_positional_embeddings |
|
else None |
|
) |
|
|
|
|
|
|
|
noisy_model_input = scheduler.add_noise(model_input, noise, timesteps) |
|
|
|
|
|
model_output = transformer( |
|
hidden_states=noisy_model_input, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep=timesteps, |
|
image_rotary_emb=image_rotary_emb, |
|
return_dict=False, |
|
)[0] |
|
model_pred = scheduler.get_velocity(model_output, noisy_model_input, timesteps) |
|
|
|
alphas_cumprod = scheduler.alphas_cumprod[timesteps] |
|
weights = 1 / (1 - alphas_cumprod) |
|
while len(weights.shape) < len(model_pred.shape): |
|
weights = weights.unsqueeze(-1) |
|
|
|
target = model_input |
|
|
|
loss = torch.mean((weights * (model_pred - target) ** 2).reshape(batch_size, -1), dim=1) |
|
loss = loss.mean() |
|
accelerator.backward(loss) |
|
|
|
if accelerator.sync_gradients: |
|
params_to_clip = transformer.parameters() |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
|
|
if accelerator.state.deepspeed_plugin is None: |
|
optimizer.step() |
|
optimizer.zero_grad() |
|
|
|
lr_scheduler.step() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if accelerator.is_main_process or accelerator.distributed_type == DistributedType.DEEPSPEED: |
|
if global_step % args.checkpointing_steps == 0: |
|
|
|
if args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(args.output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"Removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
if accelerator.is_main_process: |
|
if args.validation_prompt is not None and (epoch + 1) % args.validation_epochs == 0: |
|
|
|
pipe = CogVideoXPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
transformer=unwrap_model(transformer), |
|
text_encoder=unwrap_model(text_encoder), |
|
scheduler=scheduler, |
|
revision=args.revision, |
|
variant=args.variant, |
|
torch_dtype=weight_dtype, |
|
) |
|
|
|
validation_prompts = args.validation_prompt.split(args.validation_prompt_separator) |
|
for validation_prompt in validation_prompts: |
|
pipeline_args = { |
|
"prompt": validation_prompt, |
|
"guidance_scale": args.guidance_scale, |
|
"use_dynamic_cfg": args.use_dynamic_cfg, |
|
"height": args.height, |
|
"width": args.width, |
|
} |
|
|
|
validation_outputs = log_validation( |
|
pipe=pipe, |
|
args=args, |
|
accelerator=accelerator, |
|
pipeline_args=pipeline_args, |
|
epoch=epoch, |
|
) |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
transformer = unwrap_model(transformer) |
|
dtype = ( |
|
torch.float16 |
|
if args.mixed_precision == "fp16" |
|
else torch.bfloat16 |
|
if args.mixed_precision == "bf16" |
|
else torch.float32 |
|
) |
|
transformer = transformer.to(dtype) |
|
transformer_lora_layers = get_peft_model_state_dict(transformer) |
|
|
|
CogVideoXPipeline.save_lora_weights( |
|
save_directory=args.output_dir, |
|
transformer_lora_layers=transformer_lora_layers, |
|
) |
|
|
|
|
|
del transformer |
|
free_memory() |
|
|
|
|
|
pipe = CogVideoXPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
revision=args.revision, |
|
variant=args.variant, |
|
torch_dtype=weight_dtype, |
|
) |
|
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config) |
|
|
|
if args.enable_slicing: |
|
pipe.vae.enable_slicing() |
|
if args.enable_tiling: |
|
pipe.vae.enable_tiling() |
|
|
|
|
|
lora_scaling = args.lora_alpha / args.rank |
|
pipe.load_lora_weights(args.output_dir, adapter_name="cogvideox-lora") |
|
pipe.set_adapters(["cogvideox-lora"], [lora_scaling]) |
|
|
|
|
|
validation_outputs = [] |
|
if args.validation_prompt and args.num_validation_videos > 0: |
|
validation_prompts = args.validation_prompt.split(args.validation_prompt_separator) |
|
for validation_prompt in validation_prompts: |
|
pipeline_args = { |
|
"prompt": validation_prompt, |
|
"guidance_scale": args.guidance_scale, |
|
"use_dynamic_cfg": args.use_dynamic_cfg, |
|
"height": args.height, |
|
"width": args.width, |
|
} |
|
|
|
video = log_validation( |
|
pipe=pipe, |
|
args=args, |
|
accelerator=accelerator, |
|
pipeline_args=pipeline_args, |
|
epoch=epoch, |
|
is_final_validation=True, |
|
) |
|
validation_outputs.extend(video) |
|
|
|
if args.push_to_hub: |
|
save_model_card( |
|
repo_id, |
|
videos=validation_outputs, |
|
base_model=args.pretrained_model_name_or_path, |
|
validation_prompt=args.validation_prompt, |
|
repo_folder=args.output_dir, |
|
fps=args.fps, |
|
) |
|
upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message="End of training", |
|
ignore_patterns=["step_*", "epoch_*"], |
|
) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = get_args() |
|
main(args) |
|
|