Spaces:
Runtime error
Runtime error
import torch | |
from peft import PeftModel, PeftConfig | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
peft_model_id = "LLMPrompGenAI/LLMPromptGen-AI" | |
model = AutoModelForCausalLM.from_pretrained(peft_model_id, return_dict=True, device_map='auto') | |
# tokenizer = AutoTokenizer.from_pretrained(peft_model_id) | |
mixtral_tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1") | |
def input_from_text(text): | |
return "<s>[INST]Use the provided input to create an instruction that could have been used to generate the response with an LLM.\n" + text + "[/INST]" | |
def get_instruction(text): | |
inputs = mixtral_tokenizer(input_from_text(text), return_tensors="pt") | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=150, | |
generation_kwargs={"repetition_penalty" : 1.7} | |
) | |
print(mixtral_tokenizer.decode(outputs[0], skip_special_tokens=True)) | |
return mixtral_tokenizer.decode(outputs[0], skip_special_tokens=True).split("[/INST]")[1] | |
if __name__ == "__main__": | |
# make a gradio interface | |
import gradio as gr | |
gr.Interface( | |
get_instruction, | |
[ | |
gr.Textbox(lines=10, label="LLM Response"), | |
], | |
gr.Textbox(label="LLM Predicted Prompt"), | |
title="LLM-Prompt-Predictor", | |
description="Prompt Predictor Based on LLM Response", | |
).launch() |