|
from copy import deepcopy |
|
from typing import List |
|
import torch |
|
from methods.base.model import BaseModel |
|
import tqdm |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from abc import abstractmethod |
|
from methods.elasticdnn.model.base import ElasticDNNUtil |
|
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util |
|
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util |
|
from utils.common.log import logger |
|
from utils.dl.common.model import LayerActivation, get_parameter |
|
|
|
|
|
class ElasticDNN_OnlineModel(BaseModel): |
|
def __init__(self, name: str, models_dict_path: str, device: str, ab_options: dict): |
|
super().__init__(name, models_dict_path, device) |
|
|
|
assert [k in ab_options.keys() for k in ['md_to_fm_alpha', 'fm_to_md_alpha']] |
|
self.ab_options = ab_options |
|
|
|
def get_required_model_components(self) -> List[str]: |
|
return ['fm', 'md', 'sd', 'indexes', 'bn_stats'] |
|
|
|
@torch.no_grad() |
|
def generate_sd_by_target_samples(self, target_samples: torch.Tensor): |
|
elastic_dnn_util = self.get_elastic_dnn_util() |
|
sd, unpruned_indexes_of_layers = elastic_dnn_util.extract_surrogate_dnn_via_samples_with_perf_test(self.models_dict['md'], target_samples.to(self.device), True) |
|
logger.debug(f'generate sd: \n{sd}') |
|
return sd, unpruned_indexes_of_layers |
|
|
|
@torch.no_grad() |
|
def _compute_diff(self, old, new): |
|
return (new - old).norm(1) / old.norm(1) |
|
|
|
@torch.no_grad() |
|
def sd_feedback_to_md(self, after_da_sd, unpruned_indexes_of_layers): |
|
self.models_dict['sd'] = after_da_sd |
|
self.before_da_md = deepcopy(self.models_dict['md']) |
|
|
|
logger.info('\n\nsurrogate DNN feedback to master DNN...\n\n') |
|
|
|
|
|
cur_unpruned_indexes = None |
|
cur_unpruned_indexes_name = None |
|
|
|
for p_name, p in self.models_dict['sd'].named_parameters(): |
|
matched_md_param = self.get_md_matched_param_of_sd_param(p_name) |
|
logger.debug(f'if feedback: {p_name}') |
|
if matched_md_param is None: |
|
continue |
|
logger.debug(f'start feedback: {p_name}, {p.size()} -> {matched_md_param.size()}') |
|
|
|
|
|
|
|
if p_name in unpruned_indexes_of_layers.keys(): |
|
cur_unpruned_indexes = unpruned_indexes_of_layers[p_name] |
|
cur_unpruned_indexes_name = p_name |
|
|
|
if p.size() != matched_md_param.size(): |
|
logger.debug(f'cur unpruned indexes: {cur_unpruned_indexes_name}, {cur_unpruned_indexes.size()}') |
|
|
|
if p.dim() == 1: |
|
new_p = deepcopy(matched_md_param) |
|
new_p[cur_unpruned_indexes] = p |
|
elif p.dim() == 2: |
|
if p.size(0) < matched_md_param.size(0): |
|
new_p = deepcopy(matched_md_param) |
|
new_p[cur_unpruned_indexes] = p |
|
else: |
|
new_p = deepcopy(matched_md_param) |
|
new_p[:, cur_unpruned_indexes] = p |
|
p = new_p |
|
|
|
assert p.size() == matched_md_param.size(), f'{p.size()}, {matched_md_param.size()}' |
|
|
|
diff = self._compute_diff(matched_md_param, (matched_md_param + p) / 2.) |
|
matched_md_param.copy_((matched_md_param + p) / 2.) |
|
logger.debug(f'end feedback: {p_name}, diff: {diff:.6f}') |
|
|
|
def infer(self, x, *args, **kwargs): |
|
return self.models_dict['sd'](x) |
|
|
|
def set_sd_sparsity(self, sparsity: float): |
|
elastic_dnn_util = self.get_elastic_dnn_util() |
|
elastic_dnn_util.clear_cached_channel_attention_in_master_dnn(self.models_dict['md']) |
|
elastic_dnn_util.set_master_dnn_sparsity(self.models_dict['md'], sparsity) |
|
|
|
@torch.no_grad() |
|
def md_feedback_to_self_fm(self): |
|
logger.info('\n\nmaster DNN feedback to self foundation model...\n\n') |
|
|
|
|
|
def upsample_2d_tensor(p: torch.Tensor, target_len: int): |
|
assert p.dim() == 2 |
|
return F.upsample(p.unsqueeze(1).unsqueeze(3), |
|
size=(target_len, 1), |
|
mode='bilinear').squeeze(3).squeeze(1) |
|
|
|
for (p_name, p), before_p in zip(self.models_dict['md'].named_parameters(), self.before_da_md.parameters()): |
|
matched_fm_param = self.get_fm_matched_param_of_md_param(p_name) |
|
logger.debug(f'if feedback: {p_name}') |
|
if matched_fm_param is None: |
|
continue |
|
|
|
index = self.models_dict['indexes'][p_name] |
|
logger.debug(f'start feedback: {p_name}, {p.size()} -> {matched_fm_param.size()}, index: {index.size()}') |
|
|
|
p_update = p - before_p |
|
if p.dim() == 2: |
|
p_update = upsample_2d_tensor(p_update, matched_fm_param.size(1)) |
|
|
|
p_update = p_update.unsqueeze(1) |
|
index = index.unsqueeze(-1) |
|
|
|
|
|
|
|
|
|
|
|
agg_p_update = 0 |
|
|
|
cur_split_size = 64 |
|
while index.size(0) % cur_split_size != 0: |
|
cur_split_size -= 1 |
|
|
|
for i in range(0, index.size(0), cur_split_size): |
|
agg_p_update += p_update[i: i + cur_split_size] * index[i: i + cur_split_size] |
|
agg_p_update = agg_p_update.sum(0) |
|
|
|
|
|
else: |
|
agg_p_update = (p_update.unsqueeze(1) * index).sum(0) |
|
|
|
new_fm_param = matched_fm_param + agg_p_update * self.ab_options['md_to_fm_alpha'] |
|
|
|
diff = self._compute_diff(matched_fm_param, new_fm_param) |
|
|
|
|
|
|
|
|
|
self.update_fm_param(p_name, new_fm_param) |
|
|
|
logger.debug(f'end feedback: {p_name}, diff: {diff:.6f} (md_to_fm_alpha={self.ab_options["md_to_fm_alpha"]:.4f})') |
|
|
|
@abstractmethod |
|
@torch.no_grad() |
|
def update_fm_param(self, md_param_name, cal_new_fm_param_by_md_param): |
|
""" |
|
you should get the reference of fm_param and update it |
|
""" |
|
raise NotImplementedError |
|
|
|
@torch.no_grad() |
|
def aggregate_fms_to_self_fm(self, fms: List[nn.Module]): |
|
|
|
logger.info('\n\naggregate foundation models to self foundation model...\n\n') |
|
for p_name, self_p in self.models_dict['fm'].named_parameters(): |
|
logger.debug(f'if aggregate {p_name}') |
|
if 'abs' in p_name or p_name.startswith('norm') or p_name.startswith('head'): |
|
logger.debug(f'{p_name} belongs to LoRA parameters/task-specific head, i.e. task-specific parameters, skip') |
|
continue |
|
all_p = [get_parameter(fm, p_name) for fm in fms] |
|
if any([_p is None for _p in all_p]): |
|
continue |
|
|
|
avg_p = sum(all_p) / len(all_p) |
|
|
|
|
|
diff = self._compute_diff(self_p, avg_p) |
|
logger.debug(f'aggregate {p_name}, diff {diff:.6f}') |
|
|
|
self_p.copy_(avg_p) |
|
|
|
@torch.no_grad() |
|
def fm_feedback_to_md(self): |
|
logger.info('\n\nself foundation model feedback to master DNN...\n\n') |
|
|
|
|
|
def downsample_2d_tensor(p: torch.Tensor, target_len: int): |
|
assert p.dim() == 2 |
|
|
|
|
|
|
|
return F.interpolate(p.unsqueeze(1).unsqueeze(3), size=(target_len, 1), mode='bilinear').squeeze(3).squeeze(1) |
|
|
|
|
|
for p_name, p in self.models_dict['md'].named_parameters(): |
|
matched_fm_param = self.get_fm_matched_param_of_md_param(p_name) |
|
logger.debug(f'if feedback: {p_name}') |
|
if matched_fm_param is None: |
|
continue |
|
|
|
index = self.models_dict['indexes'][p_name] |
|
logger.debug(f'start feedback: {p_name}, {p.size()} -> {matched_fm_param.size()}, index: {index.size()}') |
|
|
|
if p.dim() == 2: |
|
matched_fm_param = downsample_2d_tensor(matched_fm_param, p.size(1)) |
|
|
|
matched_fm_param = matched_fm_param.unsqueeze(0) |
|
index = index.unsqueeze(-1) |
|
|
|
|
|
|
|
|
|
|
|
agg_fm_param = 0 |
|
|
|
cur_split_size = 64 |
|
while index.size(1) % cur_split_size != 0: |
|
cur_split_size -= 1 |
|
|
|
for i in range(0, index.size(1), cur_split_size): |
|
agg_fm_param += matched_fm_param[:, i: i + cur_split_size] * index[:, i: i + cur_split_size] |
|
agg_fm_param = agg_fm_param.sum(1) |
|
|
|
|
|
else: |
|
agg_fm_param = (matched_fm_param.unsqueeze(0) * index).sum(1) |
|
|
|
|
|
|
|
diff = self._compute_diff(p, agg_fm_param) |
|
p.copy_(agg_fm_param * self.ab_options['fm_to_md_alpha'] + (1. - self.ab_options['fm_to_md_alpha']) * p) |
|
|
|
logger.debug(f'end feedback: {p_name}, diff: {diff:.6f} (fm_to_md_alpha: {self.ab_options["fm_to_md_alpha"]:.4f})') |
|
|
|
@abstractmethod |
|
def get_elastic_dnn_util(self) -> ElasticDNNUtil: |
|
pass |
|
|
|
@abstractmethod |
|
def get_task_head_params(self): |
|
pass |
|
|
|
@abstractmethod |
|
def get_md_matched_param_of_sd_param(self, sd_param_name): |
|
pass |
|
|
|
@abstractmethod |
|
def get_fm_matched_param_of_md_param(self, md_param_name): |
|
pass |
|
|
|
@abstractmethod |
|
def get_md_matched_param_of_fm_param(self, fm_param_name): |
|
pass |