File size: 30,837 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

import torch
from torch import nn 
from copy import deepcopy

from .base import FM_to_MD_Util
from utils.common.log import logger
from utils.dl.common.model import set_module, get_module, get_super_module
from utils.dl.common.model import get_model_device, get_model_latency, get_model_size
from utils.common.log import logger
from typing import Optional, Tuple

from transformers.models.clip.modeling_clip import CLIPAttention
from transformers import CLIPVisionConfig


class CLIPAttentionPrunable(CLIPAttention):
    """Multi-headed attention from 'Attention Is All You Need' paper"""


    def __init__(self):
        config = CLIPVisionConfig.from_pretrained('openai/clip-vit-base-patch16')
        super(CLIPAttentionPrunable, self).__init__(config)
    
    
    # def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
    #     # print(tensor.size(), self.num_heads, self.head_dim, bsz) # torch.Size([1, 197, 192]) 8 64 1
    #     # head_dim should be modified
        
    #     # 'b n (h d) -> b h n d', h = self.num_heads
        
    #     if seq_len == -1:
    #         seq_len = tensor.size(1)
            
    #     # print(tensor.size(), bsz, seq_len, self.num_heads, -1)
    #     return tensor.view(bsz, seq_len, self.num_heads, -1).transpose(1, 2).contiguous()

    # def forward(
    #     self,
    #     hidden_states: torch.Tensor,
    #     attention_mask: Optional[torch.Tensor] = None,
    #     causal_attention_mask: Optional[torch.Tensor] = None,
    #     output_attentions: Optional[bool] = False,
    # ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
    #     """Input shape: Batch x Time x Channel"""

    #     bsz, tgt_len, embed_dim = hidden_states.size()

    #     # get query proj
    #     query_states = self.q_proj(hidden_states) * self.scale
    #     key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
    #     value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

    #     proj_shape = (-1, tgt_len, self.head_dim)
    #     # print(proj_shape, key_states.size())
    #     query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
    #     key_states = key_states.view(*proj_shape)
    #     value_states = value_states.view(*proj_shape)

    #     src_len = key_states.size(1)
    #     attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

    #     # if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
    #     #     raise ValueError(
    #     #         f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
    #     #         f" {attn_weights.size()}"
    #     #     )

    #     # apply the causal_attention_mask first
    #     if causal_attention_mask is not None:
    #         if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
    #             raise ValueError(
    #                 f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
    #                 f" {causal_attention_mask.size()}"
    #             )
    #         attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
    #         attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

    #     if attention_mask is not None:
    #         if attention_mask.size() != (bsz, 1, tgt_len, src_len):
    #             raise ValueError(
    #                 f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
    #             )
    #         attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
    #         attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

    #     attn_weights = nn.functional.softmax(attn_weights, dim=-1)

    #     if output_attentions:
    #         # this operation is a bit akward, but it's required to
    #         # make sure that attn_weights keeps its gradient.
    #         # In order to do so, attn_weights have to reshaped
    #         # twice and have to be reused in the following
    #         attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
    #         attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
    #     else:
    #         attn_weights_reshaped = None

    #     attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

    #     attn_output = torch.bmm(attn_probs, value_states)

    #     # if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
    #     #     raise ValueError(
    #     #         f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
    #     #         f" {attn_output.size()}"
    #     #     )

    #     attn_output = attn_output.view(bsz, self.num_heads, tgt_len, -1)
    #     attn_output = attn_output.transpose(1, 2)
    #     attn_output = attn_output.reshape(bsz, tgt_len, -1)

    #     attn_output = self.out_proj(attn_output)

    #     return attn_output, attn_weights_reshaped
    
    
    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
    
    def _shape_dynamic_head_dim(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, -1).transpose(1, 2).contiguous()

    def _shape_dynamic_num_head(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, -1, self.head_dim).transpose(1, 2).contiguous()
    
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        causal_attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        bsz, tgt_len, embed_dim = hidden_states.size()

        # logger.info(f'hidden state size: {hidden_states.size()}') # (64, 197, 768)

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scale
        key_states = self._shape_dynamic_head_dim(self.k_proj(hidden_states), tgt_len, bsz)
        value_states = self._shape_dynamic_head_dim(self.v_proj(hidden_states), tgt_len, bsz)
        
        # (64, 197, 768), numhead: 12, head_dim: 64, seq_len: 197
        # logger.info(f'key states: {self.k_proj(hidden_states).size()}, bsz: {bsz}, num_heads: {self.num_heads}, head_dim: {self.head_dim}, '
        #             f'seq_len: {self.k_proj(hidden_states).numel() / bsz / self.num_heads / self.head_dim}')
        # (64, 197, 768), numhead: 12, head_dim: 64, seq_len: 197
        # logger.info(f'value states: {self.v_proj(hidden_states).size()}, bsz: {bsz}, num_heads: {self.num_heads}, head_dim: {self.head_dim}, '
                    # f'seq_len: {self.v_proj(hidden_states).numel() / bsz / self.num_heads / self.head_dim}')

        proj_shape = (bsz * self.num_heads, tgt_len, -1)
        query_states = self._shape_dynamic_head_dim(query_states, tgt_len, bsz).view(*proj_shape)
        
        # (64, 12, 197, 64), -1 means 197
        # logger.info(f'query states: {self._shape(query_states, tgt_len, bsz).size()}, '
        #             f'-1 in proj_shape: {self._shape(query_states, tgt_len, bsz).numel() / bsz / self.num_heads / self.head_dim}')
        
        key_states = key_states.view(*proj_shape)
        value_states = value_states.view(*proj_shape)

        src_len = key_states.size(1)
        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
                f" {attn_weights.size()}"
            )

        # apply the causal_attention_mask first
        if causal_attention_mask is not None:
            if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
                    f" {causal_attention_mask.size()}"
                )
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
                )
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        if output_attentions:
            # this operation is a bit akward, but it's required to
            # make sure that attn_weights keeps its gradient.
            # In order to do so, attn_weights have to reshaped
            # twice and have to be reused in the following
            attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
        else:
            attn_weights_reshaped = None

        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

        attn_output = torch.bmm(attn_probs, value_states)

        # if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
        #     raise ValueError(
        #         f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
        #         f" {attn_output.size()}"
        #     )
        # print(attn_output.size(), bsz, tgt_len, embed_dim)
        attn_output = attn_output.view(bsz, self.num_heads, tgt_len, -1)
        attn_output = attn_output.transpose(1, 2)
        attn_output = attn_output.reshape(bsz, tgt_len, -1)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped
    
    # reduce num_head
    # def forward(
    #     self,
    #     hidden_states: torch.Tensor,
    #     attention_mask: Optional[torch.Tensor] = None,
    #     causal_attention_mask: Optional[torch.Tensor] = None,
    #     output_attentions: Optional[bool] = False,
    # ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
    #     """Input shape: Batch x Time x Channel"""

    #     bsz, tgt_len, embed_dim = hidden_states.size()

    #     # logger.info(f'hidden state size: {hidden_states.size()}') # (64, 197, 768)

    #     # get query proj
    #     query_states = self.q_proj(hidden_states) * self.scale
    #     key_states = self._shape_dynamic_num_head(self.k_proj(hidden_states), tgt_len, bsz)
    #     value_states = self._shape_dynamic_num_head(self.v_proj(hidden_states), tgt_len, bsz)
        
    #     # (64, 197, 768), numhead: 12, head_dim: 64, seq_len: 197
    #     # logger.info(f'key states: {self.k_proj(hidden_states).size()}, bsz: {bsz}, num_heads: {self.num_heads}, head_dim: {self.head_dim}, '
    #     #             f'seq_len: {self.k_proj(hidden_states).numel() / bsz / self.num_heads / self.head_dim}')
    #     # (64, 197, 768), numhead: 12, head_dim: 64, seq_len: 197
    #     # logger.info(f'value states: {self.v_proj(hidden_states).size()}, bsz: {bsz}, num_heads: {self.num_heads}, head_dim: {self.head_dim}, '
    #                 # f'seq_len: {self.v_proj(hidden_states).numel() / bsz / self.num_heads / self.head_dim}')

    #     proj_shape = (-1, tgt_len, self.head_dim)
    #     query_states = self._shape_dynamic_head_dim(query_states, tgt_len, bsz).view(*proj_shape)
        
    #     # (64, 12, 197, 64), -1 means 197
    #     # logger.info(f'query states: {self._shape(query_states, tgt_len, bsz).size()}, '
    #     #             f'-1 in proj_shape: {self._shape(query_states, tgt_len, bsz).numel() / bsz / self.num_heads / self.head_dim}')
        
    #     key_states = key_states.view(*proj_shape)
    #     value_states = value_states.view(*proj_shape)

    #     src_len = key_states.size(1)
    #     attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

    #     # if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
    #     #     raise ValueError(
    #     #         f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
    #     #         f" {attn_weights.size()}"
    #     #     )

    #     # apply the causal_attention_mask first
    #     if causal_attention_mask is not None:
    #         if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
    #             raise ValueError(
    #                 f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
    #                 f" {causal_attention_mask.size()}"
    #             )
    #         attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
    #         attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

    #     if attention_mask is not None:
    #         if attention_mask.size() != (bsz, 1, tgt_len, src_len):
    #             raise ValueError(
    #                 f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
    #             )
    #         attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
    #         attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

    #     attn_weights = nn.functional.softmax(attn_weights, dim=-1)

    #     if output_attentions:
    #         # this operation is a bit akward, but it's required to
    #         # make sure that attn_weights keeps its gradient.
    #         # In order to do so, attn_weights have to reshaped
    #         # twice and have to be reused in the following
    #         attn_weights_reshaped = attn_weights.view(bsz, -1, tgt_len, src_len)
    #         attn_weights = attn_weights_reshaped.view(-1, tgt_len, src_len)
    #     else:
    #         attn_weights_reshaped = None

    #     attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

    #     attn_output = torch.bmm(attn_probs, value_states)

    #     # if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
    #     #     raise ValueError(
    #     #         f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
    #     #         f" {attn_output.size()}"
    #     #     )
    #     # print(attn_output.size(), bsz, tgt_len, embed_dim)
    #     attn_output = attn_output.view(bsz, -1, tgt_len, self.head_dim)
    #     attn_output = attn_output.transpose(1, 2)
    #     attn_output = attn_output.reshape(bsz, tgt_len, -1)

    #     attn_output = self.out_proj(attn_output)

    #     return attn_output, attn_weights_reshaped
    
    
    @staticmethod
    def init_from_exist_self_attn(attn: CLIPAttention):
        # print(attn)
        
        res = CLIPAttentionPrunable()
        
        for attr in dir(attn):
            # if str(attr) in ['transpose_for_scores'] or str(attr).startswith('_'):
            #     continue
            # if isinstance(getattr(attn, attr), nn.Module):
                # print(attr)
                
            if isinstance(getattr(attn, attr), nn.Module):
                try:
                    # print(attr, 'ok')
                    setattr(res, attr, getattr(attn, attr))
                    
                except Exception as e:
                    print(attr, str(e))
        
        
        
        return res
    

from einops import rearrange, repeat
from einops.layers.torch import Rearrange

class PrunableAttention(nn.Module):
    """
    https://github.com/lucidrains/vit-pytorch
    """
    def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., qkv_bias = False):
        super().__init__()
        self.inner_dim = inner_dim = dim_head *  heads
        project_out = not (heads == 1 and dim_head == dim)

        self.num_heads = heads
        self.scale = dim_head ** -0.5

        self.attend = nn.Softmax(dim = -1)
        self.dropout = nn.Dropout(dropout)

        self.qkv = nn.Linear(dim, inner_dim * 3, bias = qkv_bias)

        # self.proj = nn.Sequential(
        #     nn.Linear(inner_dim, dim),
        #     nn.Dropout(dropout)
        # ) if project_out else nn.Identity()
        
        self.proj = nn.Linear(inner_dim, dim) if project_out else nn.Identity()
        self.proj_dropout = nn.Dropout(dropout)

    def forward(self, hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        causal_attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = False,):
        
        x = hidden_states
        assert attention_mask is None
        assert causal_attention_mask is None
        assert not output_attentions
        # qkv = self.qkv(x).chunk(3, dim = -1)
        raw_qkv = self.qkv(x)
        
        self.inner_dim = (raw_qkv.size(-1) - self.proj.in_features) // 2
        qkv = raw_qkv[:, :, 0: self.inner_dim], raw_qkv[:, :, self.inner_dim: self.inner_dim * 2], raw_qkv[:, :, self.inner_dim * 2:]
        
        # print('v', qkv[0].size(), qkv[0].sum((0, 1))[0: 10], qkv[0].sum((0, 1)).nonzero(as_tuple=True)[0].size())
        
        # raw_v = qkv[2]
        # print('after_fbs_q, after_fbs_k', qkv[0].sum((0, 1))[0: 10], qkv[0].sum((0, 1)).nonzero(as_tuple=True)[0].size(),
        #       qkv[1].sum((0, 1))[0: 10], qkv[1].sum((0, 1)).nonzero(as_tuple=True)[0].size(),)
        # print('after_fbs_v', raw_v.size(), raw_v.sum((0, 1))[0: 10], raw_v.sum((0, 1)).nonzero(as_tuple=True)[0].size())
        # print('q, before rearrage', qkv[0].size())
        q, k, v = qkv
        # print('raw qkv size', q.size(), k.size(), v.size())
        # exit()
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.num_heads), qkv)
        # print('raw qkv size', q.size(), k.size(), v.size())
        
        dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
        
        # print('q, k, dots, after rearrage', q.size(), k.transpose(-1, -2).size(), dots.size())
        
        attn = self.attend(dots)
        # attn = dots
        attn = self.dropout(attn)

        # print(attn)
        # print('attn', attn.size(), attn.sum((0, 1))[0: 10], attn.sum((0, 1)).nonzero(as_tuple=True)[0].size())
        # print('attn', attn.size(), attn.sum((0, 1))[0: 10], attn.sum((0, 1)).nonzero(as_tuple=True)[0].size())
        # print('v2', v.size())
        out = torch.matmul(attn, v)
        # print('out1', out.size())
        # NOTE: just for trial debug
        # out = v
        
        # print('out before rerange', out.size())
        
        # print(v.size(), v)
        # exit()
        
        out = rearrange(out, 'b h n d -> b n (h d)')

        # print('out', out.size(), out.sum((0, 1))[0: 10], out.sum((0, 1)).nonzero(as_tuple=True)[0].size())
        # exit()
        
        res = self.proj_dropout(self.proj(out))
        
        # res = self.proj_dropout(
        #     F.linear(self.proj.weight.T, out.T, self.proj.bias)
        # )
        # print(self.proj, self.proj_dropout)
        # print('res', res.size(), res.sum((0, 1))[0: 10], res.sum((0, 1)).nonzero(as_tuple=True)[0].size())

        return res, None


class FM_to_MD_CLIP_Util(FM_to_MD_Util):
    def init_md_from_fm_by_reducing_width(self, fm: nn.Module, reducing_width_ratio: int) -> nn.Module:
        fm_vit = deepcopy(fm)
        
        
        # for block in fm_vit.model.text_model.encoder.layers:
        #     set_module(block, 'self_attn', CLIPAttentionPrunable.init_from_exist_self_attn(block.self_attn))
        
        debug_input = torch.rand((1, 3, 32, 32)).cuda()
        fm.eval()
        o1 = fm.model.vision_model(debug_input).pooler_output
        for block in fm_vit.model.vision_model.encoder.layers:
            # set_module(block, 'self_attn', CLIPAttentionPrunable.init_from_exist_self_attn(block.self_attn))
            
            attn: CLIPAttention = block.self_attn
            # from dnns.vit import PrunableAttention
            new_attn = PrunableAttention(
                dim=768,
                heads=12,
                dim_head=64,
                dropout=0,
                qkv_bias=True
            )
            new_attn.qkv.weight.data.copy_(torch.cat([
                attn.q_proj.weight,
                attn.k_proj.weight,
                attn.v_proj.weight
            ], dim=0))
            new_attn.qkv.bias.data.copy_(torch.cat([
                attn.q_proj.bias,
                attn.k_proj.bias,
                attn.v_proj.bias
            ], dim=0))
            new_attn.proj.weight.data.copy_(attn.out_proj.weight)
            new_attn.proj.bias.data.copy_(attn.out_proj.bias)
            set_module(block, 'self_attn', new_attn)
        o2 = fm.model.vision_model(debug_input).pooler_output
        
        # NOTE: bug is here!!!
        # although the diff is ZERO, but the logic of CLIPAttentionPrunable is incorrect!!!!
        diff = ((o1 - o2) ** 2).sum()
        print('diff before/after adding CLIPAttentionPrunable', diff)
        assert diff < 1e-4

        # print('\n\nDEBUG: WITHOUT ADDING CLIPAttentionPrunable\n\n')
        
        # exit()
        
        # return fm
        def _f(n):
            return int(n // reducing_width_ratio)
        
        # def _rand_indexes(n):
            # return torch.randperm(n)[0: int(n // reducing_width_ratio)]
            
        def l1_max_indexes(p: torch.Tensor, dim=0):
            assert dim in [0, 1]
            assert p.dim() in [1, 2, 4]
            
            if dim == 1:
                p = p.T
            
            p_norm = p.abs().contiguous().view(p.size(0), -1).sum(dim=1)
            n = p.size(0)
            res = p_norm.argsort(descending=True)[0: int(n // reducing_width_ratio)].sort()[0]
            # print(res)
            return res
        
        # first_attn = True
        
        # for block_i, block in enumerate(fm_vit.model.text_model.encoder.layers):
        #     for k in ['k_proj', 'q_proj', 'v_proj']:
        #         qkv = get_module(block, f'self_attn.{k}')

        #         new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features), 
        #                             qkv.bias is not None, qkv.weight.device)
        #         indexes = l1_max_indexes(qkv.weight.data, 0)
                
        #         new_qkv.weight.data.copy_(qkv.weight.data[indexes])
        #         if qkv.bias is not None:
        #             new_qkv.bias.data.copy_(qkv.bias.data[indexes])
        #         set_module(block, f'self_attn.{k}', new_qkv)

        #     proj = block.self_attn.out_proj
        #     new_proj = nn.Linear(_f(proj.in_features), proj.out_features, 
        #                         proj.bias is not None, proj.weight.device)
        #     new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
        #     if proj.bias is not None:
        #         new_proj.bias.data.copy_(proj.bias.data)
        #     set_module(block, f'self_attn.out_proj', new_proj)
            
        #     fc1 = block.mlp.fc1
        #     new_fc1 = nn.Linear(fc1.in_features, _f(fc1.out_features), 
        #                         fc1.bias is not None, fc1.weight.device)
        #     indexes = l1_max_indexes(fc1.weight.data, 0)
        #     new_fc1.weight.data.copy_(fc1.weight.data[indexes])
        #     if fc1.bias is not None:
        #         new_fc1.bias.data.copy_(fc1.bias.data[indexes])
        #     set_module(block, f'mlp.fc1', new_fc1)

        #     fc2 = block.mlp.fc2
        #     new_fc2 = nn.Linear(_f(fc2.in_features), fc2.out_features, 
        #                         fc2.bias is not None, fc2.weight.device)
        #     new_fc2.weight.data.copy_(fc2.weight.data[:, l1_max_indexes(fc2.weight.data, 1)])
        #     if fc2.bias is not None:
        #         new_fc2.bias.data.copy_(fc2.bias.data)
        #     set_module(block, f'mlp.fc2', new_fc2)
            
            
        for block_i, block in enumerate(fm_vit.model.vision_model.encoder.layers):
            # for k in ['k_proj', 'q_proj', 'v_proj']:
            #     qkv = get_module(block, f'self_attn.{k}')

            #     new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features), 
            #                         qkv.bias is not None, qkv.weight.device)
            #     indexes = l1_max_indexes(qkv.weight.data, 0)
                
            #     new_qkv.weight.data.copy_(qkv.weight.data[indexes])
            #     if qkv.bias is not None:
            #         new_qkv.bias.data.copy_(qkv.bias.data[indexes])
            #     set_module(block, f'self_attn.{k}', new_qkv)

            # proj = block.self_attn.out_proj
            # new_proj = nn.Linear(_f(proj.in_features), proj.out_features, 
            #                     proj.bias is not None, proj.weight.device)
            # new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
            # if proj.bias is not None:
            #     new_proj.bias.data.copy_(proj.bias.data)
            # set_module(block, f'self_attn.out_proj', new_proj)
            
            
            # ------------------
            
            qkv = block.self_attn.qkv
            new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features), 
                                qkv.bias is not None, qkv.weight.device)
            indexes = l1_max_indexes(qkv.weight.data, 0)
            
            new_qkv.weight.data.copy_(qkv.weight.data[indexes])
            if qkv.bias is not None:
                new_qkv.bias.data.copy_(qkv.bias.data[indexes])
            set_module(block, f'self_attn.qkv', new_qkv)
            proj = block.self_attn.proj
            new_proj = nn.Linear(_f(proj.in_features), proj.out_features, 
                                proj.bias is not None, proj.weight.device)
            new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
            if proj.bias is not None:
                new_proj.bias.data.copy_(proj.bias.data)
            set_module(block, f'self_attn.proj', new_proj)
            
            # --------------------
            
            fc1 = block.mlp.fc1
            new_fc1 = nn.Linear(fc1.in_features, _f(fc1.out_features), 
                                fc1.bias is not None, fc1.weight.device)
            indexes = l1_max_indexes(fc1.weight.data, 0)
            new_fc1.weight.data.copy_(fc1.weight.data[indexes])
            if fc1.bias is not None:
                new_fc1.bias.data.copy_(fc1.bias.data[indexes])
            set_module(block, f'mlp.fc1', new_fc1)

            fc2 = block.mlp.fc2
            new_fc2 = nn.Linear(_f(fc2.in_features), fc2.out_features, 
                                fc2.bias is not None, fc2.weight.device)
            new_fc2.weight.data.copy_(fc2.weight.data[:, l1_max_indexes(fc2.weight.data, 1)])
            if fc2.bias is not None:
                new_fc2.bias.data.copy_(fc2.bias.data)
            set_module(block, f'mlp.fc2', new_fc2)
            
        
        return fm_vit
    
    
    def init_md_from_fm_by_reducing_width_with_perf_test(self, fm: nn.Module, reducing_width_ratio: int,
                                                         samples: torch.Tensor) -> nn.Module:
        fm_size = get_model_size(fm, True)
        fm_latency = self._get_model_latency(fm, samples, 20, 
                                               get_model_device(fm), 20, False)
        
        master_dnn = self.init_md_from_fm_by_reducing_width(fm, reducing_width_ratio)
        master_dnn_size = get_model_size(master_dnn, True)
        logger.debug(f'inited master DNN: {master_dnn}')
        # from utils.dl.common.model import get_module
        # print('after generating')
        # get_module(fm, 'head').debug()
        # get_module(master_dnn, 'head').debug()
        # print('test master latency')
        master_dnn_latency = self._get_model_latency(master_dnn, samples, 20, 
                                               get_model_device(master_dnn), 20, False)

        logger.info(f'init master DNN (w/o FBS yet) by reducing foundation model\'s width (by {reducing_width_ratio:d}x)')
        logger.info(f'foundation model ({fm_size:.3f}MB, {fm_latency:.4f}s/sample) -> '
                    f'master DNN ({master_dnn_size:.3f}MB, {master_dnn_latency:.4f}s/sample)\n'
                    f'(model size: ↓ {(fm_size / master_dnn_size):.2f}x, '
                    f'latency: ↓ {(fm_latency / master_dnn_latency):.2f}x)')
        
        return master_dnn
        
    def _get_model_latency(self, model: torch.nn.Module, model_input_size, sample_num: int, 
                           device: str, warmup_sample_num: int, return_detail=False):
        import time
        
        if isinstance(model_input_size, tuple):
            dummy_input = torch.rand(model_input_size).to(device)
        else:
            dummy_input = model_input_size
            
        model = model.to(device)
        model.eval()
        
        # warm up
        with torch.no_grad():
            for _ in range(warmup_sample_num):
                model(**dummy_input)
                
        infer_time_list = []
                
        if device == 'cuda' or 'cuda' in str(device):
            with torch.no_grad():
                for _ in range(sample_num):
                    s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
                    s.record()
                    model(**dummy_input)
                    e.record()
                    torch.cuda.synchronize()
                    cur_model_infer_time = s.elapsed_time(e) / 1000.
                    infer_time_list += [cur_model_infer_time]

        else:
            with torch.no_grad():
                for _ in range(sample_num):
                    start = time.time()
                    model(**dummy_input)
                    cur_model_infer_time = time.time() - start
                    infer_time_list += [cur_model_infer_time]
                    
        avg_infer_time = sum(infer_time_list) / sample_num

        if return_detail:
            return avg_infer_time, infer_time_list
        return avg_infer_time