lkm2835's picture
Update app.py
332fc39 verified
raw
history blame
4.37 kB
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import torch
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MODEL_LIST = ["LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = os.environ.get("MODEL_ID")
DESCRIPTION = """\
# EXAONE 3.0 7.8B Instruct
<span class="We-hope-EXAONE-continues-to-advance-Expert-AI-with-its-effectiveness-and-bilingual-skills">We hope EXAONE continues to advance Expert AI with its effectiveness and bilingual skills.</span>
<center>This is a official demo of <a href=https://huggingface.co./LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct>LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct</a>, fine-tuned for instruction following.</center>
<center>πŸ‘‹ For more details, please check <a href=https://www.lgresearch.ai/blog/view?seq=460>our blog</a> or <a href=https://arxiv.org/abs/2408.03541>technical report</a></center>
"""
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 128
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "3840"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
model.eval()
@spaces.GPU()
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 128,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
) -> Iterator[str]:
messages = [{"role":"system","content": system_prompt}]
print(f'message: {message}')
print(f'chat_history: {chat_history}')
for user, assistant in chat_history:
messages.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
messages.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
)
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from messages as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=False if top_k == 1 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=1.0,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chatbot = gr.Chatbot(layout="bubble", bubble_full_width=False)
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=chatbot,
additional_inputs=[
gr.Textbox(
value="You are EXAONE model from LG AI Research, a helpful assistant.",
label="System Prompt",
render=False,
),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=2.0,
step=0.1,
value=0.7,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
],
stop_btn=None,
examples=[
["Explain who you are"],
["λ„ˆμ˜ μ†Œμ›μ„ 말해봐"],
],
cache_examples=False,
)
with gr.Blocks(css="style.css", fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()