|
import os |
|
from threading import Thread |
|
from typing import Iterator |
|
import gradio as gr |
|
import torch |
|
import spaces |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
|
|
MODEL_LIST = ["LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct"] |
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
MODEL = os.environ.get("MODEL_ID") |
|
|
|
DESCRIPTION = """\ |
|
# EXAONE 3.0 7.8B Instruct |
|
|
|
<span class="We-hope-EXAONE-continues-to-advance-Expert-AI-with-its-effectiveness-and-bilingual-skills">We hope EXAONE continues to advance Expert AI with its effectiveness and bilingual skills.</span> |
|
|
|
<center>This is a official demo of <a href=https://huggingface.co./LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct>LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct</a>, fine-tuned for instruction following.</center> |
|
|
|
<center>π For more details, please check <a href=https://www.lgresearch.ai/blog/view?seq=460>our blog</a> or <a href=https://arxiv.org/abs/2408.03541>technical report</a></center> |
|
""" |
|
|
|
MAX_MAX_NEW_TOKENS = 4096 |
|
DEFAULT_MAX_NEW_TOKENS = 128 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "3840")) |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL, |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
device_map="auto", |
|
) |
|
|
|
model.eval() |
|
|
|
|
|
@spaces.GPU() |
|
def generate( |
|
message: str, |
|
chat_history: list[tuple[str, str]], |
|
system_prompt: str, |
|
max_new_tokens: int = 128, |
|
temperature: float = 0.6, |
|
top_p: float = 0.9, |
|
top_k: int = 50, |
|
) -> Iterator[str]: |
|
messages = [{"role":"system","content": system_prompt}] |
|
print(f'message: {message}') |
|
print(f'chat_history: {chat_history}') |
|
for user, assistant in chat_history: |
|
messages.extend( |
|
[ |
|
{"role": "user", "content": user}, |
|
{"role": "assistant", "content": assistant}, |
|
] |
|
) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
) |
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning(f"Trimmed input from messages as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
input_ids = input_ids.to(model.device) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
{"input_ids": input_ids}, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=False if top_k == 1 else True, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
num_beams=1, |
|
repetition_penalty=1.0, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
|
|
chatbot = gr.Chatbot(layout="bubble", bubble_full_width=False) |
|
|
|
chat_interface = gr.ChatInterface( |
|
fn=generate, |
|
chatbot=chatbot, |
|
additional_inputs=[ |
|
gr.Textbox( |
|
value="You are EXAONE model from LG AI Research, a helpful assistant.", |
|
label="System Prompt", |
|
render=False, |
|
), |
|
gr.Slider( |
|
label="Max new tokens", |
|
minimum=1, |
|
maximum=MAX_MAX_NEW_TOKENS, |
|
step=1, |
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
), |
|
gr.Slider( |
|
label="Temperature", |
|
minimum=0.1, |
|
maximum=2.0, |
|
step=0.1, |
|
value=0.7, |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
minimum=0.05, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.9, |
|
), |
|
gr.Slider( |
|
label="Top-k", |
|
minimum=1, |
|
maximum=1000, |
|
step=1, |
|
value=50, |
|
), |
|
], |
|
stop_btn=None, |
|
examples=[ |
|
["Explain who you are"], |
|
["λμ μμμ λ§ν΄λ΄"], |
|
], |
|
cache_examples=False, |
|
) |
|
|
|
with gr.Blocks(css="style.css", fill_height=True) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
chat_interface.render() |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |