Spaces:
Sleeping
Sleeping
KyuDan1
commited on
Commit
·
6518d17
1
Parent(s):
eb5c134
first
Browse files- app.py +38 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load model and tokenizer
|
6 |
+
model_name = "Kyudan/distilbert-base-uncased-finetuned-cola"
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
|
10 |
+
def classify_text(text):
|
11 |
+
# Tokenize the input text
|
12 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
13 |
+
|
14 |
+
# Perform inference
|
15 |
+
with torch.no_grad():
|
16 |
+
outputs = model(**inputs)
|
17 |
+
|
18 |
+
# Get the predicted class and its probability
|
19 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
20 |
+
predicted_class = torch.argmax(probabilities, dim=-1).item()
|
21 |
+
confidence = probabilities[0][predicted_class].item()
|
22 |
+
|
23 |
+
# Map the predicted class to a label (assuming binary classification)
|
24 |
+
label = "Positive" if predicted_class == 1 else "Negative"
|
25 |
+
|
26 |
+
return f"Classification: {label}\nConfidence: {confidence:.2f}"
|
27 |
+
|
28 |
+
# Gradio interface setup
|
29 |
+
demo = gr.Interface(
|
30 |
+
fn=classify_text,
|
31 |
+
inputs="text",
|
32 |
+
outputs="text",
|
33 |
+
title="Text Classification Demo",
|
34 |
+
description="Enter a sentence to classify its sentiment (positive/negative)."
|
35 |
+
)
|
36 |
+
|
37 |
+
if __name__ == "__main__":
|
38 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.22.2
|
2 |
+
datasets
|
3 |
+
torch
|
4 |
+
transformers
|