# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Tuple, TypeVar, Union import cv2 import numpy as np import torch from torch import BoolTensor, Tensor from mmdet.structures.mask.structures import BitmapMasks, PolygonMasks from .base_boxes import BaseBoxes from .bbox_overlaps import bbox_overlaps from .box_type import register_box T = TypeVar('T') DeviceType = Union[str, torch.device] MaskType = Union[BitmapMasks, PolygonMasks] @register_box(name='hbox') class HorizontalBoxes(BaseBoxes): """The horizontal box class used in MMDetection by default. The ``box_dim`` of ``HorizontalBoxes`` is 4, which means the length of the last dimension of the data should be 4. Two modes of box data are supported in ``HorizontalBoxes``: - 'xyxy': Each row of data indicates (x1, y1, x2, y2), which are the coordinates of the left-top and right-bottom points. - 'cxcywh': Each row of data indicates (x, y, w, h), where (x, y) are the coordinates of the box centers and (w, h) are the width and height. ``HorizontalBoxes`` only restores 'xyxy' mode of data. If the the data is in 'cxcywh' mode, users need to input ``in_mode='cxcywh'`` and The code will convert the 'cxcywh' data to 'xyxy' automatically. Args: data (Tensor or np.ndarray or Sequence): The box data with shape of (..., 4). dtype (torch.dtype, Optional): data type of boxes. Defaults to None. device (str or torch.device, Optional): device of boxes. Default to None. clone (bool): Whether clone ``boxes`` or not. Defaults to True. mode (str, Optional): the mode of boxes. If it is 'cxcywh', the `data` will be converted to 'xyxy' mode. Defaults to None. """ box_dim: int = 4 def __init__(self, data: Union[Tensor, np.ndarray], dtype: torch.dtype = None, device: DeviceType = None, clone: bool = True, in_mode: Optional[str] = None) -> None: super().__init__(data=data, dtype=dtype, device=device, clone=clone) if isinstance(in_mode, str): if in_mode not in ('xyxy', 'cxcywh'): raise ValueError(f'Get invalid mode {in_mode}.') if in_mode == 'cxcywh': self.tensor = self.cxcywh_to_xyxy(self.tensor) @staticmethod def cxcywh_to_xyxy(boxes: Tensor) -> Tensor: """Convert box coordinates from (cx, cy, w, h) to (x1, y1, x2, y2). Args: boxes (Tensor): cxcywh boxes tensor with shape of (..., 4). Returns: Tensor: xyxy boxes tensor with shape of (..., 4). """ ctr, wh = boxes.split((2, 2), dim=-1) return torch.cat([(ctr - wh / 2), (ctr + wh / 2)], dim=-1) @staticmethod def xyxy_to_cxcywh(boxes: Tensor) -> Tensor: """Convert box coordinates from (x1, y1, x2, y2) to (cx, cy, w, h). Args: boxes (Tensor): xyxy boxes tensor with shape of (..., 4). Returns: Tensor: cxcywh boxes tensor with shape of (..., 4). """ xy1, xy2 = boxes.split((2, 2), dim=-1) return torch.cat([(xy2 + xy1) / 2, (xy2 - xy1)], dim=-1) @property def cxcywh(self) -> Tensor: """Return a tensor representing the cxcywh boxes.""" return self.xyxy_to_cxcywh(self.tensor) @property def centers(self) -> Tensor: """Return a tensor representing the centers of boxes.""" boxes = self.tensor return (boxes[..., :2] + boxes[..., 2:]) / 2 @property def areas(self) -> Tensor: """Return a tensor representing the areas of boxes.""" boxes = self.tensor return (boxes[..., 2] - boxes[..., 0]) * ( boxes[..., 3] - boxes[..., 1]) @property def widths(self) -> Tensor: """Return a tensor representing the widths of boxes.""" boxes = self.tensor return boxes[..., 2] - boxes[..., 0] @property def heights(self) -> Tensor: """Return a tensor representing the heights of boxes.""" boxes = self.tensor return boxes[..., 3] - boxes[..., 1] def flip_(self, img_shape: Tuple[int, int], direction: str = 'horizontal') -> None: """Flip boxes horizontally or vertically in-place. Args: img_shape (Tuple[int, int]): A tuple of image height and width. direction (str): Flip direction, options are "horizontal", "vertical" and "diagonal". Defaults to "horizontal" """ assert direction in ['horizontal', 'vertical', 'diagonal'] flipped = self.tensor boxes = flipped.clone() if direction == 'horizontal': flipped[..., 0] = img_shape[1] - boxes[..., 2] flipped[..., 2] = img_shape[1] - boxes[..., 0] elif direction == 'vertical': flipped[..., 1] = img_shape[0] - boxes[..., 3] flipped[..., 3] = img_shape[0] - boxes[..., 1] else: flipped[..., 0] = img_shape[1] - boxes[..., 2] flipped[..., 1] = img_shape[0] - boxes[..., 3] flipped[..., 2] = img_shape[1] - boxes[..., 0] flipped[..., 3] = img_shape[0] - boxes[..., 1] def translate_(self, distances: Tuple[float, float]) -> None: """Translate boxes in-place. Args: distances (Tuple[float, float]): translate distances. The first is horizontal distance and the second is vertical distance. """ boxes = self.tensor assert len(distances) == 2 self.tensor = boxes + boxes.new_tensor(distances).repeat(2) def clip_(self, img_shape: Tuple[int, int]) -> None: """Clip boxes according to the image shape in-place. Args: img_shape (Tuple[int, int]): A tuple of image height and width. """ boxes = self.tensor boxes[..., 0::2] = boxes[..., 0::2].clamp(0, img_shape[1]) boxes[..., 1::2] = boxes[..., 1::2].clamp(0, img_shape[0]) def rotate_(self, center: Tuple[float, float], angle: float) -> None: """Rotate all boxes in-place. Args: center (Tuple[float, float]): Rotation origin. angle (float): Rotation angle represented in degrees. Positive values mean clockwise rotation. """ boxes = self.tensor rotation_matrix = boxes.new_tensor( cv2.getRotationMatrix2D(center, -angle, 1)) corners = self.hbox2corner(boxes) corners = torch.cat( [corners, corners.new_ones(*corners.shape[:-1], 1)], dim=-1) corners_T = torch.transpose(corners, -1, -2) corners_T = torch.matmul(rotation_matrix, corners_T) corners = torch.transpose(corners_T, -1, -2) self.tensor = self.corner2hbox(corners) def project_(self, homography_matrix: Union[Tensor, np.ndarray]) -> None: """Geometric transformat boxes in-place. Args: homography_matrix (Tensor or np.ndarray]): Shape (3, 3) for geometric transformation. """ boxes = self.tensor if isinstance(homography_matrix, np.ndarray): homography_matrix = boxes.new_tensor(homography_matrix) corners = self.hbox2corner(boxes) corners = torch.cat( [corners, corners.new_ones(*corners.shape[:-1], 1)], dim=-1) corners_T = torch.transpose(corners, -1, -2) corners_T = torch.matmul(homography_matrix, corners_T) corners = torch.transpose(corners_T, -1, -2) # Convert to homogeneous coordinates by normalization corners = corners[..., :2] / corners[..., 2:3] self.tensor = self.corner2hbox(corners) @staticmethod def hbox2corner(boxes: Tensor) -> Tensor: """Convert box coordinates from (x1, y1, x2, y2) to corners ((x1, y1), (x2, y1), (x1, y2), (x2, y2)). Args: boxes (Tensor): Horizontal box tensor with shape of (..., 4). Returns: Tensor: Corner tensor with shape of (..., 4, 2). """ x1, y1, x2, y2 = torch.split(boxes, 1, dim=-1) corners = torch.cat([x1, y1, x2, y1, x1, y2, x2, y2], dim=-1) return corners.reshape(*corners.shape[:-1], 4, 2) @staticmethod def corner2hbox(corners: Tensor) -> Tensor: """Convert box coordinates from corners ((x1, y1), (x2, y1), (x1, y2), (x2, y2)) to (x1, y1, x2, y2). Args: corners (Tensor): Corner tensor with shape of (..., 4, 2). Returns: Tensor: Horizontal box tensor with shape of (..., 4). """ if corners.numel() == 0: return corners.new_zeros((0, 4)) min_xy = corners.min(dim=-2)[0] max_xy = corners.max(dim=-2)[0] return torch.cat([min_xy, max_xy], dim=-1) def rescale_(self, scale_factor: Tuple[float, float]) -> None: """Rescale boxes w.r.t. rescale_factor in-place. Note: Both ``rescale_`` and ``resize_`` will enlarge or shrink boxes w.r.t ``scale_facotr``. The difference is that ``resize_`` only changes the width and the height of boxes, but ``rescale_`` also rescales the box centers simultaneously. Args: scale_factor (Tuple[float, float]): factors for scaling boxes. The length should be 2. """ boxes = self.tensor assert len(scale_factor) == 2 scale_factor = boxes.new_tensor(scale_factor).repeat(2) self.tensor = boxes * scale_factor def resize_(self, scale_factor: Tuple[float, float]) -> None: """Resize the box width and height w.r.t scale_factor in-place. Note: Both ``rescale_`` and ``resize_`` will enlarge or shrink boxes w.r.t ``scale_facotr``. The difference is that ``resize_`` only changes the width and the height of boxes, but ``rescale_`` also rescales the box centers simultaneously. Args: scale_factor (Tuple[float, float]): factors for scaling box shapes. The length should be 2. """ boxes = self.tensor assert len(scale_factor) == 2 ctrs = (boxes[..., 2:] + boxes[..., :2]) / 2 wh = boxes[..., 2:] - boxes[..., :2] scale_factor = boxes.new_tensor(scale_factor) wh = wh * scale_factor xy1 = ctrs - 0.5 * wh xy2 = ctrs + 0.5 * wh self.tensor = torch.cat([xy1, xy2], dim=-1) def is_inside(self, img_shape: Tuple[int, int], all_inside: bool = False, allowed_border: int = 0) -> BoolTensor: """Find boxes inside the image. Args: img_shape (Tuple[int, int]): A tuple of image height and width. all_inside (bool): Whether the boxes are all inside the image or part inside the image. Defaults to False. allowed_border (int): Boxes that extend beyond the image shape boundary by more than ``allowed_border`` are considered "outside" Defaults to 0. Returns: BoolTensor: A BoolTensor indicating whether the box is inside the image. Assuming the original boxes have shape (m, n, 4), the output has shape (m, n). """ img_h, img_w = img_shape boxes = self.tensor if all_inside: return (boxes[:, 0] >= -allowed_border) & \ (boxes[:, 1] >= -allowed_border) & \ (boxes[:, 2] < img_w + allowed_border) & \ (boxes[:, 3] < img_h + allowed_border) else: return (boxes[..., 0] < img_w + allowed_border) & \ (boxes[..., 1] < img_h + allowed_border) & \ (boxes[..., 2] > -allowed_border) & \ (boxes[..., 3] > -allowed_border) def find_inside_points(self, points: Tensor, is_aligned: bool = False) -> BoolTensor: """Find inside box points. Boxes dimension must be 2. Args: points (Tensor): Points coordinates. Has shape of (m, 2). is_aligned (bool): Whether ``points`` has been aligned with boxes or not. If True, the length of boxes and ``points`` should be the same. Defaults to False. Returns: BoolTensor: A BoolTensor indicating whether a point is inside boxes. Assuming the boxes has shape of (n, 4), if ``is_aligned`` is False. The index has shape of (m, n). If ``is_aligned`` is True, m should be equal to n and the index has shape of (m, ). """ boxes = self.tensor assert boxes.dim() == 2, 'boxes dimension must be 2.' if not is_aligned: boxes = boxes[None, :, :] points = points[:, None, :] else: assert boxes.size(0) == points.size(0) x_min, y_min, x_max, y_max = boxes.unbind(dim=-1) return (points[..., 0] >= x_min) & (points[..., 0] <= x_max) & \ (points[..., 1] >= y_min) & (points[..., 1] <= y_max) @staticmethod def overlaps(boxes1: BaseBoxes, boxes2: BaseBoxes, mode: str = 'iou', is_aligned: bool = False, eps: float = 1e-6) -> Tensor: """Calculate overlap between two set of boxes with their types converted to ``HorizontalBoxes``. Args: boxes1 (:obj:`BaseBoxes`): BaseBoxes with shape of (m, box_dim) or empty. boxes2 (:obj:`BaseBoxes`): BaseBoxes with shape of (n, box_dim) or empty. mode (str): "iou" (intersection over union), "iof" (intersection over foreground). Defaults to "iou". is_aligned (bool): If True, then m and n must be equal. Defaults to False. eps (float): A value added to the denominator for numerical stability. Defaults to 1e-6. Returns: Tensor: shape (m, n) if ``is_aligned`` is False else shape (m,) """ boxes1 = boxes1.convert_to('hbox') boxes2 = boxes2.convert_to('hbox') return bbox_overlaps( boxes1.tensor, boxes2.tensor, mode=mode, is_aligned=is_aligned, eps=eps) @staticmethod def from_instance_masks(masks: MaskType) -> 'HorizontalBoxes': """Create horizontal boxes from instance masks. Args: masks (:obj:`BitmapMasks` or :obj:`PolygonMasks`): BitmapMasks or PolygonMasks instance with length of n. Returns: :obj:`HorizontalBoxes`: Converted boxes with shape of (n, 4). """ num_masks = len(masks) boxes = np.zeros((num_masks, 4), dtype=np.float32) if isinstance(masks, BitmapMasks): x_any = masks.masks.any(axis=1) y_any = masks.masks.any(axis=2) for idx in range(num_masks): x = np.where(x_any[idx, :])[0] y = np.where(y_any[idx, :])[0] if len(x) > 0 and len(y) > 0: # use +1 for x_max and y_max so that the right and bottom # boundary of instance masks are fully included by the box boxes[idx, :] = np.array( [x[0], y[0], x[-1] + 1, y[-1] + 1], dtype=np.float32) elif isinstance(masks, PolygonMasks): for idx, poly_per_obj in enumerate(masks.masks): # simply use a number that is big enough for comparison with # coordinates xy_min = np.array([masks.width * 2, masks.height * 2], dtype=np.float32) xy_max = np.zeros(2, dtype=np.float32) for p in poly_per_obj: xy = np.array(p).reshape(-1, 2).astype(np.float32) xy_min = np.minimum(xy_min, np.min(xy, axis=0)) xy_max = np.maximum(xy_max, np.max(xy, axis=0)) boxes[idx, :2] = xy_min boxes[idx, 2:] = xy_max else: raise TypeError( '`masks` must be `BitmapMasks` or `PolygonMasks`, ' f'but got {type(masks)}.') return HorizontalBoxes(boxes)