# Copyright (c) OpenMMLab. All rights reserved. import math from typing import Dict, Tuple import torch import torch.nn.functional as F from mmcv.cnn.bricks.transformer import MultiScaleDeformableAttention from mmengine.model import xavier_init from torch import Tensor, nn from torch.nn.init import normal_ from mmdet.registry import MODELS from mmdet.structures import OptSampleList from mmdet.utils import OptConfigType from ..layers import (DeformableDetrTransformerDecoder, DeformableDetrTransformerEncoder, SinePositionalEncoding) from .base_detr import DetectionTransformer @MODELS.register_module() class DeformableDETR(DetectionTransformer): r"""Implementation of `Deformable DETR: Deformable Transformers for End-to-End Object Detection `_ Code is modified from the `official github repo `_. Args: decoder (:obj:`ConfigDict` or dict, optional): Config of the Transformer decoder. Defaults to None. bbox_head (:obj:`ConfigDict` or dict, optional): Config for the bounding box head module. Defaults to None. with_box_refine (bool, optional): Whether to refine the references in the decoder. Defaults to `False`. as_two_stage (bool, optional): Whether to generate the proposal from the outputs of encoder. Defaults to `False`. num_feature_levels (int, optional): Number of feature levels. Defaults to 4. """ def __init__(self, *args, decoder: OptConfigType = None, bbox_head: OptConfigType = None, with_box_refine: bool = False, as_two_stage: bool = False, num_feature_levels: int = 4, **kwargs) -> None: self.with_box_refine = with_box_refine self.as_two_stage = as_two_stage self.num_feature_levels = num_feature_levels if bbox_head is not None: assert 'share_pred_layer' not in bbox_head and \ 'num_pred_layer' not in bbox_head and \ 'as_two_stage' not in bbox_head, \ 'The two keyword args `share_pred_layer`, `num_pred_layer`, ' \ 'and `as_two_stage are set in `detector.__init__()`, users ' \ 'should not set them in `bbox_head` config.' # The last prediction layer is used to generate proposal # from encode feature map when `as_two_stage` is `True`. # And all the prediction layers should share parameters # when `with_box_refine` is `True`. bbox_head['share_pred_layer'] = not with_box_refine bbox_head['num_pred_layer'] = (decoder['num_layers'] + 1) \ if self.as_two_stage else decoder['num_layers'] bbox_head['as_two_stage'] = as_two_stage super().__init__(*args, decoder=decoder, bbox_head=bbox_head, **kwargs) def _init_layers(self) -> None: """Initialize layers except for backbone, neck and bbox_head.""" self.positional_encoding = SinePositionalEncoding( **self.positional_encoding) self.encoder = DeformableDetrTransformerEncoder(**self.encoder) self.decoder = DeformableDetrTransformerDecoder(**self.decoder) self.embed_dims = self.encoder.embed_dims if not self.as_two_stage: self.query_embedding = nn.Embedding(self.num_queries, self.embed_dims * 2) # NOTE The query_embedding will be split into query and query_pos # in self.pre_decoder, hence, the embed_dims are doubled. num_feats = self.positional_encoding.num_feats assert num_feats * 2 == self.embed_dims, \ 'embed_dims should be exactly 2 times of num_feats. ' \ f'Found {self.embed_dims} and {num_feats}.' self.level_embed = nn.Parameter( torch.Tensor(self.num_feature_levels, self.embed_dims)) if self.as_two_stage: self.memory_trans_fc = nn.Linear(self.embed_dims, self.embed_dims) self.memory_trans_norm = nn.LayerNorm(self.embed_dims) self.pos_trans_fc = nn.Linear(self.embed_dims * 2, self.embed_dims * 2) self.pos_trans_norm = nn.LayerNorm(self.embed_dims * 2) else: self.reference_points_fc = nn.Linear(self.embed_dims, 2) def init_weights(self) -> None: """Initialize weights for Transformer and other components.""" super().init_weights() for coder in self.encoder, self.decoder: for p in coder.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) for m in self.modules(): if isinstance(m, MultiScaleDeformableAttention): m.init_weights() if self.as_two_stage: nn.init.xavier_uniform_(self.memory_trans_fc.weight) nn.init.xavier_uniform_(self.pos_trans_fc.weight) else: xavier_init( self.reference_points_fc, distribution='uniform', bias=0.) normal_(self.level_embed) def pre_transformer( self, mlvl_feats: Tuple[Tensor], batch_data_samples: OptSampleList = None) -> Tuple[Dict]: """Process image features before feeding them to the transformer. The forward procedure of the transformer is defined as: 'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder' More details can be found at `TransformerDetector.forward_transformer` in `mmdet/detector/base_detr.py`. Args: mlvl_feats (tuple[Tensor]): Multi-level features that may have different resolutions, output from neck. Each feature has shape (bs, dim, h_lvl, w_lvl), where 'lvl' means 'layer'. batch_data_samples (list[:obj:`DetDataSample`], optional): The batch data samples. It usually includes information such as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. Defaults to None. Returns: tuple[dict]: The first dict contains the inputs of encoder and the second dict contains the inputs of decoder. - encoder_inputs_dict (dict): The keyword args dictionary of `self.forward_encoder()`, which includes 'feat', 'feat_mask', and 'feat_pos'. - decoder_inputs_dict (dict): The keyword args dictionary of `self.forward_decoder()`, which includes 'memory_mask'. """ batch_size = mlvl_feats[0].size(0) # construct binary masks for the transformer. assert batch_data_samples is not None batch_input_shape = batch_data_samples[0].batch_input_shape img_shape_list = [sample.img_shape for sample in batch_data_samples] input_img_h, input_img_w = batch_input_shape masks = mlvl_feats[0].new_ones((batch_size, input_img_h, input_img_w)) for img_id in range(batch_size): img_h, img_w = img_shape_list[img_id] masks[img_id, :img_h, :img_w] = 0 # NOTE following the official DETR repo, non-zero values representing # ignored positions, while zero values means valid positions. mlvl_masks = [] mlvl_pos_embeds = [] for feat in mlvl_feats: mlvl_masks.append( F.interpolate(masks[None], size=feat.shape[-2:]).to(torch.bool).squeeze(0)) mlvl_pos_embeds.append(self.positional_encoding(mlvl_masks[-1])) feat_flatten = [] lvl_pos_embed_flatten = [] mask_flatten = [] spatial_shapes = [] for lvl, (feat, mask, pos_embed) in enumerate( zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)): batch_size, c, h, w = feat.shape # [bs, c, h_lvl, w_lvl] -> [bs, h_lvl*w_lvl, c] feat = feat.view(batch_size, c, -1).permute(0, 2, 1) pos_embed = pos_embed.view(batch_size, c, -1).permute(0, 2, 1) lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) # [bs, h_lvl, w_lvl] -> [bs, h_lvl*w_lvl] mask = mask.flatten(1) spatial_shape = (h, w) feat_flatten.append(feat) lvl_pos_embed_flatten.append(lvl_pos_embed) mask_flatten.append(mask) spatial_shapes.append(spatial_shape) # (bs, num_feat_points, dim) feat_flatten = torch.cat(feat_flatten, 1) lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) # (bs, num_feat_points), where num_feat_points = sum_lvl(h_lvl*w_lvl) mask_flatten = torch.cat(mask_flatten, 1) spatial_shapes = torch.as_tensor( # (num_level, 2) spatial_shapes, dtype=torch.long, device=feat_flatten.device) level_start_index = torch.cat(( spatial_shapes.new_zeros((1, )), # (num_level) spatial_shapes.prod(1).cumsum(0)[:-1])) valid_ratios = torch.stack( # (bs, num_level, 2) [self.get_valid_ratio(m) for m in mlvl_masks], 1) encoder_inputs_dict = dict( feat=feat_flatten, feat_mask=mask_flatten, feat_pos=lvl_pos_embed_flatten, spatial_shapes=spatial_shapes, level_start_index=level_start_index, valid_ratios=valid_ratios) decoder_inputs_dict = dict( memory_mask=mask_flatten, spatial_shapes=spatial_shapes, level_start_index=level_start_index, valid_ratios=valid_ratios) return encoder_inputs_dict, decoder_inputs_dict def forward_encoder(self, feat: Tensor, feat_mask: Tensor, feat_pos: Tensor, spatial_shapes: Tensor, level_start_index: Tensor, valid_ratios: Tensor) -> Dict: """Forward with Transformer encoder. The forward procedure of the transformer is defined as: 'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder' More details can be found at `TransformerDetector.forward_transformer` in `mmdet/detector/base_detr.py`. Args: feat (Tensor): Sequential features, has shape (bs, num_feat_points, dim). feat_mask (Tensor): ByteTensor, the padding mask of the features, has shape (bs, num_feat_points). feat_pos (Tensor): The positional embeddings of the features, has shape (bs, num_feat_points, dim). spatial_shapes (Tensor): Spatial shapes of features in all levels, has shape (num_levels, 2), last dimension represents (h, w). level_start_index (Tensor): The start index of each level. A tensor has shape (num_levels, ) and can be represented as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...]. valid_ratios (Tensor): The ratios of the valid width and the valid height relative to the width and the height of features in all levels, has shape (bs, num_levels, 2). Returns: dict: The dictionary of encoder outputs, which includes the `memory` of the encoder output. """ memory = self.encoder( query=feat, query_pos=feat_pos, key_padding_mask=feat_mask, # for self_attn spatial_shapes=spatial_shapes, level_start_index=level_start_index, valid_ratios=valid_ratios) encoder_outputs_dict = dict( memory=memory, memory_mask=feat_mask, spatial_shapes=spatial_shapes) return encoder_outputs_dict def pre_decoder(self, memory: Tensor, memory_mask: Tensor, spatial_shapes: Tensor) -> Tuple[Dict, Dict]: """Prepare intermediate variables before entering Transformer decoder, such as `query`, `query_pos`, and `reference_points`. The forward procedure of the transformer is defined as: 'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder' More details can be found at `TransformerDetector.forward_transformer` in `mmdet/detector/base_detr.py`. Args: memory (Tensor): The output embeddings of the Transformer encoder, has shape (bs, num_feat_points, dim). memory_mask (Tensor): ByteTensor, the padding mask of the memory, has shape (bs, num_feat_points). It will only be used when `as_two_stage` is `True`. spatial_shapes (Tensor): Spatial shapes of features in all levels, has shape (num_levels, 2), last dimension represents (h, w). It will only be used when `as_two_stage` is `True`. Returns: tuple[dict, dict]: The decoder_inputs_dict and head_inputs_dict. - decoder_inputs_dict (dict): The keyword dictionary args of `self.forward_decoder()`, which includes 'query', 'query_pos', 'memory', and `reference_points`. The reference_points of decoder input here are 4D boxes when `as_two_stage` is `True`, otherwise 2D points, although it has `points` in its name. The reference_points in encoder is always 2D points. - head_inputs_dict (dict): The keyword dictionary args of the bbox_head functions, which includes `enc_outputs_class` and `enc_outputs_coord`. They are both `None` when 'as_two_stage' is `False`. The dict is empty when `self.training` is `False`. """ batch_size, _, c = memory.shape if self.as_two_stage: output_memory, output_proposals = \ self.gen_encoder_output_proposals( memory, memory_mask, spatial_shapes) enc_outputs_class = self.bbox_head.cls_branches[ self.decoder.num_layers]( output_memory) enc_outputs_coord_unact = self.bbox_head.reg_branches[ self.decoder.num_layers](output_memory) + output_proposals enc_outputs_coord = enc_outputs_coord_unact.sigmoid() # We only use the first channel in enc_outputs_class as foreground, # the other (num_classes - 1) channels are actually not used. # Its targets are set to be 0s, which indicates the first # class (foreground) because we use [0, num_classes - 1] to # indicate class labels, background class is indicated by # num_classes (similar convention in RPN). # See https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/deformable_detr_head.py#L241 # noqa # This follows the official implementation of Deformable DETR. topk_proposals = torch.topk( enc_outputs_class[..., 0], self.num_queries, dim=1)[1] topk_coords_unact = torch.gather( enc_outputs_coord_unact, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)) topk_coords_unact = topk_coords_unact.detach() reference_points = topk_coords_unact.sigmoid() pos_trans_out = self.pos_trans_fc( self.get_proposal_pos_embed(topk_coords_unact)) pos_trans_out = self.pos_trans_norm(pos_trans_out) query_pos, query = torch.split(pos_trans_out, c, dim=2) else: enc_outputs_class, enc_outputs_coord = None, None query_embed = self.query_embedding.weight query_pos, query = torch.split(query_embed, c, dim=1) query_pos = query_pos.unsqueeze(0).expand(batch_size, -1, -1) query = query.unsqueeze(0).expand(batch_size, -1, -1) reference_points = self.reference_points_fc(query_pos).sigmoid() decoder_inputs_dict = dict( query=query, query_pos=query_pos, memory=memory, reference_points=reference_points) head_inputs_dict = dict( enc_outputs_class=enc_outputs_class, enc_outputs_coord=enc_outputs_coord) if self.training else dict() return decoder_inputs_dict, head_inputs_dict def forward_decoder(self, query: Tensor, query_pos: Tensor, memory: Tensor, memory_mask: Tensor, reference_points: Tensor, spatial_shapes: Tensor, level_start_index: Tensor, valid_ratios: Tensor) -> Dict: """Forward with Transformer decoder. The forward procedure of the transformer is defined as: 'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder' More details can be found at `TransformerDetector.forward_transformer` in `mmdet/detector/base_detr.py`. Args: query (Tensor): The queries of decoder inputs, has shape (bs, num_queries, dim). query_pos (Tensor): The positional queries of decoder inputs, has shape (bs, num_queries, dim). memory (Tensor): The output embeddings of the Transformer encoder, has shape (bs, num_feat_points, dim). memory_mask (Tensor): ByteTensor, the padding mask of the memory, has shape (bs, num_feat_points). reference_points (Tensor): The initial reference, has shape (bs, num_queries, 4) with the last dimension arranged as (cx, cy, w, h) when `as_two_stage` is `True`, otherwise has shape (bs, num_queries, 2) with the last dimension arranged as (cx, cy). spatial_shapes (Tensor): Spatial shapes of features in all levels, has shape (num_levels, 2), last dimension represents (h, w). level_start_index (Tensor): The start index of each level. A tensor has shape (num_levels, ) and can be represented as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...]. valid_ratios (Tensor): The ratios of the valid width and the valid height relative to the width and the height of features in all levels, has shape (bs, num_levels, 2). Returns: dict: The dictionary of decoder outputs, which includes the `hidden_states` of the decoder output and `references` including the initial and intermediate reference_points. """ inter_states, inter_references = self.decoder( query=query, value=memory, query_pos=query_pos, key_padding_mask=memory_mask, # for cross_attn reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, valid_ratios=valid_ratios, reg_branches=self.bbox_head.reg_branches if self.with_box_refine else None) references = [reference_points, *inter_references] decoder_outputs_dict = dict( hidden_states=inter_states, references=references) return decoder_outputs_dict @staticmethod def get_valid_ratio(mask: Tensor) -> Tensor: """Get the valid radios of feature map in a level. .. code:: text |---> valid_W <---| ---+-----------------+-----+--- A | | | A | | | | | | | | | | valid_H | | | | | | | | H | | | | | V | | | | ---+-----------------+ | | | | V +-----------------------+--- |---------> W <---------| The valid_ratios are defined as: r_h = valid_H / H, r_w = valid_W / W They are the factors to re-normalize the relative coordinates of the image to the relative coordinates of the current level feature map. Args: mask (Tensor): Binary mask of a feature map, has shape (bs, H, W). Returns: Tensor: valid ratios [r_w, r_h] of a feature map, has shape (1, 2). """ _, H, W = mask.shape valid_H = torch.sum(~mask[:, :, 0], 1) valid_W = torch.sum(~mask[:, 0, :], 1) valid_ratio_h = valid_H.float() / H valid_ratio_w = valid_W.float() / W valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) return valid_ratio def gen_encoder_output_proposals( self, memory: Tensor, memory_mask: Tensor, spatial_shapes: Tensor) -> Tuple[Tensor, Tensor]: """Generate proposals from encoded memory. The function will only be used when `as_two_stage` is `True`. Args: memory (Tensor): The output embeddings of the Transformer encoder, has shape (bs, num_feat_points, dim). memory_mask (Tensor): ByteTensor, the padding mask of the memory, has shape (bs, num_feat_points). spatial_shapes (Tensor): Spatial shapes of features in all levels, has shape (num_levels, 2), last dimension represents (h, w). Returns: tuple: A tuple of transformed memory and proposals. - output_memory (Tensor): The transformed memory for obtaining top-k proposals, has shape (bs, num_feat_points, dim). - output_proposals (Tensor): The inverse-normalized proposal, has shape (batch_size, num_keys, 4) with the last dimension arranged as (cx, cy, w, h). """ bs = memory.size(0) proposals = [] _cur = 0 # start index in the sequence of the current level for lvl, (H, W) in enumerate(spatial_shapes): mask_flatten_ = memory_mask[:, _cur:(_cur + H * W)].view(bs, H, W, 1) valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1).unsqueeze(-1) valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1).unsqueeze(-1) grid_y, grid_x = torch.meshgrid( torch.linspace( 0, H - 1, H, dtype=torch.float32, device=memory.device), torch.linspace( 0, W - 1, W, dtype=torch.float32, device=memory.device)) grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) scale = torch.cat([valid_W, valid_H], 1).view(bs, 1, 1, 2) grid = (grid.unsqueeze(0).expand(bs, -1, -1, -1) + 0.5) / scale wh = torch.ones_like(grid) * 0.05 * (2.0**lvl) proposal = torch.cat((grid, wh), -1).view(bs, -1, 4) proposals.append(proposal) _cur += (H * W) output_proposals = torch.cat(proposals, 1) output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all( -1, keepdim=True) # inverse_sigmoid output_proposals = torch.log(output_proposals / (1 - output_proposals)) output_proposals = output_proposals.masked_fill( memory_mask.unsqueeze(-1), float('inf')) output_proposals = output_proposals.masked_fill( ~output_proposals_valid, float('inf')) output_memory = memory output_memory = output_memory.masked_fill( memory_mask.unsqueeze(-1), float(0)) output_memory = output_memory.masked_fill(~output_proposals_valid, float(0)) output_memory = self.memory_trans_fc(output_memory) output_memory = self.memory_trans_norm(output_memory) # [bs, sum(hw), 2] return output_memory, output_proposals @staticmethod def get_proposal_pos_embed(proposals: Tensor, num_pos_feats: int = 128, temperature: int = 10000) -> Tensor: """Get the position embedding of the proposal. Args: proposals (Tensor): Not normalized proposals, has shape (bs, num_queries, 4) with the last dimension arranged as (cx, cy, w, h). num_pos_feats (int, optional): The feature dimension for each position along x, y, w, and h-axis. Note the final returned dimension for each position is 4 times of num_pos_feats. Default to 128. temperature (int, optional): The temperature used for scaling the position embedding. Defaults to 10000. Returns: Tensor: The position embedding of proposal, has shape (bs, num_queries, num_pos_feats * 4), with the last dimension arranged as (cx, cy, w, h) """ scale = 2 * math.pi dim_t = torch.arange( num_pos_feats, dtype=torch.float32, device=proposals.device) dim_t = temperature**(2 * (dim_t // 2) / num_pos_feats) # N, L, 4 proposals = proposals.sigmoid() * scale # N, L, 4, 128 pos = proposals[:, :, :, None] / dim_t # N, L, 4, 64, 2 pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4).flatten(2) return pos