# Copyright (c) OpenMMLab. All rights reserved. import copy import warnings from collections import OrderedDict from typing import List, Optional, Sequence, Union import numpy as np from mmengine.evaluator import BaseMetric from mmengine.logging import MMLogger from mmdet.registry import METRICS from ..functional import eval_map, eval_recalls @METRICS.register_module() class VOCMetric(BaseMetric): """Pascal VOC evaluation metric. Args: iou_thrs (float or List[float]): IoU threshold. Defaults to 0.5. scale_ranges (List[tuple], optional): Scale ranges for evaluating mAP. If not specified, all bounding boxes would be included in evaluation. Defaults to None. metric (str | list[str]): Metrics to be evaluated. Options are 'mAP', 'recall'. If is list, the first setting in the list will be used to evaluate metric. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). eval_mode (str): 'area' or '11points', 'area' means calculating the area under precision-recall curve, '11points' means calculating the average precision of recalls at [0, 0.1, ..., 1]. The PASCAL VOC2007 defaults to use '11points', while PASCAL VOC2012 defaults to use 'area'. collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None. """ default_prefix: Optional[str] = 'pascal_voc' def __init__(self, iou_thrs: Union[float, List[float]] = 0.5, scale_ranges: Optional[List[tuple]] = None, metric: Union[str, List[str]] = 'mAP', proposal_nums: Sequence[int] = (100, 300, 1000), eval_mode: str = '11points', collect_device: str = 'cpu', prefix: Optional[str] = None) -> None: super().__init__(collect_device=collect_device, prefix=prefix) self.iou_thrs = [iou_thrs] if isinstance(iou_thrs, float) \ else iou_thrs self.scale_ranges = scale_ranges # voc evaluation metrics if not isinstance(metric, str): assert len(metric) == 1 metric = metric[0] allowed_metrics = ['recall', 'mAP'] if metric not in allowed_metrics: raise KeyError( f"metric should be one of 'recall', 'mAP', but got {metric}.") self.metric = metric self.proposal_nums = proposal_nums assert eval_mode in ['area', '11points'], \ 'Unrecognized mode, only "area" and "11points" are supported' self.eval_mode = eval_mode # TODO: data_batch is no longer needed, consider adjusting the # parameter position def process(self, data_batch: dict, data_samples: Sequence[dict]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (dict): A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of data samples that contain annotations and predictions. """ for data_sample in data_samples: gt = copy.deepcopy(data_sample) # TODO: Need to refactor to support LoadAnnotations gt_instances = gt['gt_instances'] gt_ignore_instances = gt['ignored_instances'] ann = dict( labels=gt_instances['labels'].cpu().numpy(), bboxes=gt_instances['bboxes'].cpu().numpy(), bboxes_ignore=gt_ignore_instances['bboxes'].cpu().numpy(), labels_ignore=gt_ignore_instances['labels'].cpu().numpy()) pred = data_sample['pred_instances'] pred_bboxes = pred['bboxes'].cpu().numpy() pred_scores = pred['scores'].cpu().numpy() pred_labels = pred['labels'].cpu().numpy() dets = [] for label in range(len(self.dataset_meta['classes'])): index = np.where(pred_labels == label)[0] pred_bbox_scores = np.hstack( [pred_bboxes[index], pred_scores[index].reshape((-1, 1))]) dets.append(pred_bbox_scores) self.results.append((ann, dets)) def compute_metrics(self, results: list) -> dict: """Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ logger: MMLogger = MMLogger.get_current_instance() gts, preds = zip(*results) eval_results = OrderedDict() if self.metric == 'mAP': assert isinstance(self.iou_thrs, list) dataset_type = self.dataset_meta.get('dataset_type') if dataset_type in ['VOC2007', 'VOC2012']: dataset_name = 'voc' if dataset_type == 'VOC2007' and self.eval_mode != '11points': warnings.warn('Pascal VOC2007 uses `11points` as default ' 'evaluate mode, but you are using ' f'{self.eval_mode}.') elif dataset_type == 'VOC2012' and self.eval_mode != 'area': warnings.warn('Pascal VOC2012 uses `area` as default ' 'evaluate mode, but you are using ' f'{self.eval_mode}.') else: dataset_name = self.dataset_meta['classes'] mean_aps = [] for iou_thr in self.iou_thrs: logger.info(f'\n{"-" * 15}iou_thr: {iou_thr}{"-" * 15}') # Follow the official implementation, # http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCdevkit_18-May-2011.tar # we should use the legacy coordinate system in mmdet 1.x, # which means w, h should be computed as 'x2 - x1 + 1` and # `y2 - y1 + 1` mean_ap, _ = eval_map( preds, gts, scale_ranges=self.scale_ranges, iou_thr=iou_thr, dataset=dataset_name, logger=logger, eval_mode=self.eval_mode, use_legacy_coordinate=True) mean_aps.append(mean_ap) eval_results[f'AP{int(iou_thr * 100):02d}'] = round(mean_ap, 3) eval_results['mAP'] = sum(mean_aps) / len(mean_aps) eval_results.move_to_end('mAP', last=False) elif self.metric == 'recall': # TODO: Currently not checked. gt_bboxes = [ann['bboxes'] for ann in self.annotations] recalls = eval_recalls( gt_bboxes, results, self.proposal_nums, self.iou_thrs, logger=logger, use_legacy_coordinate=True) for i, num in enumerate(self.proposal_nums): for j, iou_thr in enumerate(self.iou_thrs): eval_results[f'recall@{num}@{iou_thr}'] = recalls[i, j] if recalls.shape[1] > 1: ar = recalls.mean(axis=1) for i, num in enumerate(self.proposal_nums): eval_results[f'AR@{num}'] = ar[i] return eval_results