# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Optional, Sequence, Tuple import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule, Scale from mmengine.config import ConfigDict from mmengine.structures import InstanceData from torch import Tensor from mmdet.registry import MODELS, TASK_UTILS from mmdet.structures.bbox import bbox_overlaps from mmdet.utils import (ConfigType, InstanceList, MultiConfig, OptConfigType, OptInstanceList, reduce_mean) from ..task_modules.prior_generators import anchor_inside_flags from ..task_modules.samplers import PseudoSampler from ..utils import (filter_scores_and_topk, images_to_levels, multi_apply, unmap) from .anchor_head import AnchorHead class Integral(nn.Module): """A fixed layer for calculating integral result from distribution. This layer calculates the target location by :math: ``sum{P(y_i) * y_i}``, P(y_i) denotes the softmax vector that represents the discrete distribution y_i denotes the discrete set, usually {0, 1, 2, ..., reg_max} Args: reg_max (int): The maximal value of the discrete set. Defaults to 16. You may want to reset it according to your new dataset or related settings. """ def __init__(self, reg_max: int = 16) -> None: super().__init__() self.reg_max = reg_max self.register_buffer('project', torch.linspace(0, self.reg_max, self.reg_max + 1)) def forward(self, x: Tensor) -> Tensor: """Forward feature from the regression head to get integral result of bounding box location. Args: x (Tensor): Features of the regression head, shape (N, 4*(n+1)), n is self.reg_max. Returns: x (Tensor): Integral result of box locations, i.e., distance offsets from the box center in four directions, shape (N, 4). """ x = F.softmax(x.reshape(-1, self.reg_max + 1), dim=1) x = F.linear(x, self.project.type_as(x)).reshape(-1, 4) return x @MODELS.register_module() class GFLHead(AnchorHead): """Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection. GFL head structure is similar with ATSS, however GFL uses 1) joint representation for classification and localization quality, and 2) flexible General distribution for bounding box locations, which are supervised by Quality Focal Loss (QFL) and Distribution Focal Loss (DFL), respectively https://arxiv.org/abs/2006.04388 Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. stacked_convs (int): Number of conv layers in cls and reg tower. Defaults to 4. conv_cfg (:obj:`ConfigDict` or dict, optional): dictionary to construct and config conv layer. Defaults to None. norm_cfg (:obj:`ConfigDict` or dict): dictionary to construct and config norm layer. Default: dict(type='GN', num_groups=32, requires_grad=True). loss_qfl (:obj:`ConfigDict` or dict): Config of Quality Focal Loss (QFL). bbox_coder (:obj:`ConfigDict` or dict): Config of bbox coder. Defaults to 'DistancePointBBoxCoder'. reg_max (int): Max value of integral set :math: ``{0, ..., reg_max}`` in QFL setting. Defaults to 16. init_cfg (:obj:`ConfigDict` or dict or list[dict] or list[:obj:`ConfigDict`]): Initialization config dict. Example: >>> self = GFLHead(11, 7) >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] >>> cls_quality_score, bbox_pred = self.forward(feats) >>> assert len(cls_quality_score) == len(self.scales) """ def __init__(self, num_classes: int, in_channels: int, stacked_convs: int = 4, conv_cfg: OptConfigType = None, norm_cfg: ConfigType = dict( type='GN', num_groups=32, requires_grad=True), loss_dfl: ConfigType = dict( type='DistributionFocalLoss', loss_weight=0.25), bbox_coder: ConfigType = dict(type='DistancePointBBoxCoder'), reg_max: int = 16, init_cfg: MultiConfig = dict( type='Normal', layer='Conv2d', std=0.01, override=dict( type='Normal', name='gfl_cls', std=0.01, bias_prob=0.01)), **kwargs) -> None: self.stacked_convs = stacked_convs self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.reg_max = reg_max super().__init__( num_classes=num_classes, in_channels=in_channels, bbox_coder=bbox_coder, init_cfg=init_cfg, **kwargs) if self.train_cfg: self.assigner = TASK_UTILS.build(self.train_cfg['assigner']) if self.train_cfg.get('sampler', None) is not None: self.sampler = TASK_UTILS.build( self.train_cfg['sampler'], default_args=dict(context=self)) else: self.sampler = PseudoSampler(context=self) self.integral = Integral(self.reg_max) self.loss_dfl = MODELS.build(loss_dfl) def _init_layers(self) -> None: """Initialize layers of the head.""" self.relu = nn.ReLU() self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels self.cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) assert self.num_anchors == 1, 'anchor free version' self.gfl_cls = nn.Conv2d( self.feat_channels, self.cls_out_channels, 3, padding=1) self.gfl_reg = nn.Conv2d( self.feat_channels, 4 * (self.reg_max + 1), 3, padding=1) self.scales = nn.ModuleList( [Scale(1.0) for _ in self.prior_generator.strides]) def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]: """Forward features from the upstream network. Args: x (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: Usually a tuple of classification scores and bbox prediction - cls_scores (list[Tensor]): Classification and quality (IoU) joint scores for all scale levels, each is a 4D-tensor, the channel number is num_classes. - bbox_preds (list[Tensor]): Box distribution logits for all scale levels, each is a 4D-tensor, the channel number is 4*(n+1), n is max value of integral set. """ return multi_apply(self.forward_single, x, self.scales) def forward_single(self, x: Tensor, scale: Scale) -> Sequence[Tensor]: """Forward feature of a single scale level. Args: x (Tensor): Features of a single scale level. scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize the bbox prediction. Returns: tuple: - cls_score (Tensor): Cls and quality joint scores for a single scale level the channel number is num_classes. - bbox_pred (Tensor): Box distribution logits for a single scale level, the channel number is 4*(n+1), n is max value of integral set. """ cls_feat = x reg_feat = x for cls_conv in self.cls_convs: cls_feat = cls_conv(cls_feat) for reg_conv in self.reg_convs: reg_feat = reg_conv(reg_feat) cls_score = self.gfl_cls(cls_feat) bbox_pred = scale(self.gfl_reg(reg_feat)).float() return cls_score, bbox_pred def anchor_center(self, anchors: Tensor) -> Tensor: """Get anchor centers from anchors. Args: anchors (Tensor): Anchor list with shape (N, 4), ``xyxy`` format. Returns: Tensor: Anchor centers with shape (N, 2), ``xy`` format. """ anchors_cx = (anchors[..., 2] + anchors[..., 0]) / 2 anchors_cy = (anchors[..., 3] + anchors[..., 1]) / 2 return torch.stack([anchors_cx, anchors_cy], dim=-1) def loss_by_feat_single(self, anchors: Tensor, cls_score: Tensor, bbox_pred: Tensor, labels: Tensor, label_weights: Tensor, bbox_targets: Tensor, stride: Tuple[int], avg_factor: int) -> dict: """Calculate the loss of a single scale level based on the features extracted by the detection head. Args: anchors (Tensor): Box reference for each scale level with shape (N, num_total_anchors, 4). cls_score (Tensor): Cls and quality joint scores for each scale level has shape (N, num_classes, H, W). bbox_pred (Tensor): Box distribution logits for each scale level with shape (N, 4*(n+1), H, W), n is max value of integral set. labels (Tensor): Labels of each anchors with shape (N, num_total_anchors). label_weights (Tensor): Label weights of each anchor with shape (N, num_total_anchors) bbox_targets (Tensor): BBox regression targets of each anchor weight shape (N, num_total_anchors, 4). stride (Tuple[int]): Stride in this scale level. avg_factor (int): Average factor that is used to average the loss. When using sampling method, avg_factor is usually the sum of positive and negative priors. When using `PseudoSampler`, `avg_factor` is usually equal to the number of positive priors. Returns: dict[str, Tensor]: A dictionary of loss components. """ assert stride[0] == stride[1], 'h stride is not equal to w stride!' anchors = anchors.reshape(-1, 4) cls_score = cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4 * (self.reg_max + 1)) bbox_targets = bbox_targets.reshape(-1, 4) labels = labels.reshape(-1) label_weights = label_weights.reshape(-1) # FG cat_id: [0, num_classes -1], BG cat_id: num_classes bg_class_ind = self.num_classes pos_inds = ((labels >= 0) & (labels < bg_class_ind)).nonzero().squeeze(1) score = label_weights.new_zeros(labels.shape) if len(pos_inds) > 0: pos_bbox_targets = bbox_targets[pos_inds] pos_bbox_pred = bbox_pred[pos_inds] pos_anchors = anchors[pos_inds] pos_anchor_centers = self.anchor_center(pos_anchors) / stride[0] weight_targets = cls_score.detach().sigmoid() weight_targets = weight_targets.max(dim=1)[0][pos_inds] pos_bbox_pred_corners = self.integral(pos_bbox_pred) pos_decode_bbox_pred = self.bbox_coder.decode( pos_anchor_centers, pos_bbox_pred_corners) pos_decode_bbox_targets = pos_bbox_targets / stride[0] score[pos_inds] = bbox_overlaps( pos_decode_bbox_pred.detach(), pos_decode_bbox_targets, is_aligned=True) pred_corners = pos_bbox_pred.reshape(-1, self.reg_max + 1) target_corners = self.bbox_coder.encode(pos_anchor_centers, pos_decode_bbox_targets, self.reg_max).reshape(-1) # regression loss loss_bbox = self.loss_bbox( pos_decode_bbox_pred, pos_decode_bbox_targets, weight=weight_targets, avg_factor=1.0) # dfl loss loss_dfl = self.loss_dfl( pred_corners, target_corners, weight=weight_targets[:, None].expand(-1, 4).reshape(-1), avg_factor=4.0) else: loss_bbox = bbox_pred.sum() * 0 loss_dfl = bbox_pred.sum() * 0 weight_targets = bbox_pred.new_tensor(0) # cls (qfl) loss loss_cls = self.loss_cls( cls_score, (labels, score), weight=label_weights, avg_factor=avg_factor) return loss_cls, loss_bbox, loss_dfl, weight_targets.sum() def loss_by_feat( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_gt_instances: InstanceList, batch_img_metas: List[dict], batch_gt_instances_ignore: OptInstanceList = None) -> dict: """Calculate the loss based on the features extracted by the detection head. Args: cls_scores (list[Tensor]): Cls and quality scores for each scale level has shape (N, num_classes, H, W). bbox_preds (list[Tensor]): Box distribution logits for each scale level with shape (N, 4*(n+1), H, W), n is max value of integral set. batch_gt_instances (list[:obj:`InstanceData`]): Batch of gt_instance. It usually includes ``bboxes`` and ``labels`` attributes. batch_img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): Batch of gt_instances_ignore. It includes ``bboxes`` attribute data that is ignored during training and testing. Defaults to None. Returns: dict[str, Tensor]: A dictionary of loss components. """ featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] assert len(featmap_sizes) == self.prior_generator.num_levels device = cls_scores[0].device anchor_list, valid_flag_list = self.get_anchors( featmap_sizes, batch_img_metas, device=device) cls_reg_targets = self.get_targets( anchor_list, valid_flag_list, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore=batch_gt_instances_ignore) (anchor_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, avg_factor) = cls_reg_targets avg_factor = reduce_mean( torch.tensor(avg_factor, dtype=torch.float, device=device)).item() losses_cls, losses_bbox, losses_dfl,\ avg_factor = multi_apply( self.loss_by_feat_single, anchor_list, cls_scores, bbox_preds, labels_list, label_weights_list, bbox_targets_list, self.prior_generator.strides, avg_factor=avg_factor) avg_factor = sum(avg_factor) avg_factor = reduce_mean(avg_factor).clamp_(min=1).item() losses_bbox = list(map(lambda x: x / avg_factor, losses_bbox)) losses_dfl = list(map(lambda x: x / avg_factor, losses_dfl)) return dict( loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dfl=losses_dfl) def _predict_by_feat_single(self, cls_score_list: List[Tensor], bbox_pred_list: List[Tensor], score_factor_list: List[Tensor], mlvl_priors: List[Tensor], img_meta: dict, cfg: ConfigDict, rescale: bool = False, with_nms: bool = True) -> InstanceData: """Transform a single image's features extracted from the head into bbox results. Args: cls_score_list (list[Tensor]): Box scores from all scale levels of a single image, each item has shape (num_priors * num_classes, H, W). bbox_pred_list (list[Tensor]): Box energies / deltas from all scale levels of a single image, each item has shape (num_priors * 4, H, W). score_factor_list (list[Tensor]): Score factor from all scale levels of a single image. GFL head does not need this value. mlvl_priors (list[Tensor]): Each element in the list is the priors of a single level in feature pyramid, has shape (num_priors, 4). img_meta (dict): Image meta info. cfg (:obj: `ConfigDict`): Test / postprocessing configuration, if None, test_cfg would be used. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: tuple[Tensor]: Results of detected bboxes and labels. If with_nms is False and mlvl_score_factor is None, return mlvl_bboxes and mlvl_scores, else return mlvl_bboxes, mlvl_scores and mlvl_score_factor. Usually with_nms is False is used for aug test. If with_nms is True, then return the following format - det_bboxes (Tensor): Predicted bboxes with shape [num_bboxes, 5], where the first 4 columns are bounding box positions (tl_x, tl_y, br_x, br_y) and the 5-th column are scores between 0 and 1. - det_labels (Tensor): Predicted labels of the corresponding box with shape [num_bboxes]. """ cfg = self.test_cfg if cfg is None else cfg img_shape = img_meta['img_shape'] nms_pre = cfg.get('nms_pre', -1) mlvl_bboxes = [] mlvl_scores = [] mlvl_labels = [] for level_idx, (cls_score, bbox_pred, stride, priors) in enumerate( zip(cls_score_list, bbox_pred_list, self.prior_generator.strides, mlvl_priors)): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] assert stride[0] == stride[1] bbox_pred = bbox_pred.permute(1, 2, 0) bbox_pred = self.integral(bbox_pred) * stride[0] scores = cls_score.permute(1, 2, 0).reshape( -1, self.cls_out_channels).sigmoid() # After https://github.com/open-mmlab/mmdetection/pull/6268/, # this operation keeps fewer bboxes under the same `nms_pre`. # There is no difference in performance for most models. If you # find a slight drop in performance, you can set a larger # `nms_pre` than before. results = filter_scores_and_topk( scores, cfg.score_thr, nms_pre, dict(bbox_pred=bbox_pred, priors=priors)) scores, labels, _, filtered_results = results bbox_pred = filtered_results['bbox_pred'] priors = filtered_results['priors'] bboxes = self.bbox_coder.decode( self.anchor_center(priors), bbox_pred, max_shape=img_shape) mlvl_bboxes.append(bboxes) mlvl_scores.append(scores) mlvl_labels.append(labels) results = InstanceData() results.bboxes = torch.cat(mlvl_bboxes) results.scores = torch.cat(mlvl_scores) results.labels = torch.cat(mlvl_labels) return self._bbox_post_process( results=results, cfg=cfg, rescale=rescale, with_nms=with_nms, img_meta=img_meta) def get_targets(self, anchor_list: List[Tensor], valid_flag_list: List[Tensor], batch_gt_instances: InstanceList, batch_img_metas: List[dict], batch_gt_instances_ignore: OptInstanceList = None, unmap_outputs=True) -> tuple: """Get targets for GFL head. This method is almost the same as `AnchorHead.get_targets()`. Besides returning the targets as the parent method does, it also returns the anchors as the first element of the returned tuple. """ num_imgs = len(batch_img_metas) assert len(anchor_list) == len(valid_flag_list) == num_imgs # anchor number of multi levels num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] num_level_anchors_list = [num_level_anchors] * num_imgs # concat all level anchors and flags to a single tensor for i in range(num_imgs): assert len(anchor_list[i]) == len(valid_flag_list[i]) anchor_list[i] = torch.cat(anchor_list[i]) valid_flag_list[i] = torch.cat(valid_flag_list[i]) # compute targets for each image if batch_gt_instances_ignore is None: batch_gt_instances_ignore = [None] * num_imgs (all_anchors, all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, pos_inds_list, neg_inds_list, sampling_results_list) = multi_apply( self._get_targets_single, anchor_list, valid_flag_list, num_level_anchors_list, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore, unmap_outputs=unmap_outputs) # Get `avg_factor` of all images, which calculate in `SamplingResult`. # When using sampling method, avg_factor is usually the sum of # positive and negative priors. When using `PseudoSampler`, # `avg_factor` is usually equal to the number of positive priors. avg_factor = sum( [results.avg_factor for results in sampling_results_list]) # split targets to a list w.r.t. multiple levels anchors_list = images_to_levels(all_anchors, num_level_anchors) labels_list = images_to_levels(all_labels, num_level_anchors) label_weights_list = images_to_levels(all_label_weights, num_level_anchors) bbox_targets_list = images_to_levels(all_bbox_targets, num_level_anchors) bbox_weights_list = images_to_levels(all_bbox_weights, num_level_anchors) return (anchors_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, avg_factor) def _get_targets_single(self, flat_anchors: Tensor, valid_flags: Tensor, num_level_anchors: List[int], gt_instances: InstanceData, img_meta: dict, gt_instances_ignore: Optional[InstanceData] = None, unmap_outputs: bool = True) -> tuple: """Compute regression, classification targets for anchors in a single image. Args: flat_anchors (Tensor): Multi-level anchors of the image, which are concatenated into a single tensor of shape (num_anchors, 4) valid_flags (Tensor): Multi level valid flags of the image, which are concatenated into a single tensor of shape (num_anchors,). num_level_anchors (list[int]): Number of anchors of each scale level. gt_instances (:obj:`InstanceData`): Ground truth of instance annotations. It usually includes ``bboxes`` and ``labels`` attributes. img_meta (dict): Meta information for current image. gt_instances_ignore (:obj:`InstanceData`, optional): Instances to be ignored during training. It includes ``bboxes`` attribute data that is ignored during training and testing. Defaults to None. unmap_outputs (bool): Whether to map outputs back to the original set of anchors. Defaults to True. Returns: tuple: N is the number of total anchors in the image. - anchors (Tensor): All anchors in the image with shape (N, 4). - labels (Tensor): Labels of all anchors in the image with shape (N,). - label_weights (Tensor): Label weights of all anchor in the image with shape (N,). - bbox_targets (Tensor): BBox targets of all anchors in the image with shape (N, 4). - bbox_weights (Tensor): BBox weights of all anchors in the image with shape (N, 4). - pos_inds (Tensor): Indices of positive anchor with shape (num_pos,). - neg_inds (Tensor): Indices of negative anchor with shape (num_neg,). - sampling_result (:obj:`SamplingResult`): Sampling results. """ inside_flags = anchor_inside_flags(flat_anchors, valid_flags, img_meta['img_shape'][:2], self.train_cfg['allowed_border']) if not inside_flags.any(): raise ValueError( 'There is no valid anchor inside the image boundary. Please ' 'check the image size and anchor sizes, or set ' '``allowed_border`` to -1 to skip the condition.') # assign gt and sample anchors anchors = flat_anchors[inside_flags, :] num_level_anchors_inside = self.get_num_level_anchors_inside( num_level_anchors, inside_flags) pred_instances = InstanceData(priors=anchors) assign_result = self.assigner.assign( pred_instances=pred_instances, num_level_priors=num_level_anchors_inside, gt_instances=gt_instances, gt_instances_ignore=gt_instances_ignore) sampling_result = self.sampler.sample( assign_result=assign_result, pred_instances=pred_instances, gt_instances=gt_instances) num_valid_anchors = anchors.shape[0] bbox_targets = torch.zeros_like(anchors) bbox_weights = torch.zeros_like(anchors) labels = anchors.new_full((num_valid_anchors, ), self.num_classes, dtype=torch.long) label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) pos_inds = sampling_result.pos_inds neg_inds = sampling_result.neg_inds if len(pos_inds) > 0: pos_bbox_targets = sampling_result.pos_gt_bboxes bbox_targets[pos_inds, :] = pos_bbox_targets bbox_weights[pos_inds, :] = 1.0 labels[pos_inds] = sampling_result.pos_gt_labels if self.train_cfg['pos_weight'] <= 0: label_weights[pos_inds] = 1.0 else: label_weights[pos_inds] = self.train_cfg['pos_weight'] if len(neg_inds) > 0: label_weights[neg_inds] = 1.0 # map up to original set of anchors if unmap_outputs: num_total_anchors = flat_anchors.size(0) anchors = unmap(anchors, num_total_anchors, inside_flags) labels = unmap( labels, num_total_anchors, inside_flags, fill=self.num_classes) label_weights = unmap(label_weights, num_total_anchors, inside_flags) bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) return (anchors, labels, label_weights, bbox_targets, bbox_weights, pos_inds, neg_inds, sampling_result) def get_num_level_anchors_inside(self, num_level_anchors: List[int], inside_flags: Tensor) -> List[int]: """Get the number of valid anchors in every level.""" split_inside_flags = torch.split(inside_flags, num_level_anchors) num_level_anchors_inside = [ int(flags.sum()) for flags in split_inside_flags ] return num_level_anchors_inside