# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Optional, Sequence, Tuple import torch import torch.nn as nn from mmcv.cnn import ConvModule, Scale from mmengine.model import bias_init_with_prob, normal_init from mmengine.structures import InstanceData from torch import Tensor from mmdet.registry import MODELS, TASK_UTILS from mmdet.structures.bbox import bbox_overlaps from mmdet.utils import (ConfigType, InstanceList, OptConfigType, OptInstanceList, reduce_mean) from ..task_modules.prior_generators import anchor_inside_flags from ..utils import images_to_levels, multi_apply, unmap from .anchor_head import AnchorHead EPS = 1e-12 @MODELS.register_module() class DDODHead(AnchorHead): """Detection Head of `DDOD `_. DDOD head decomposes conjunctions lying in most current one-stage detectors via label assignment disentanglement, spatial feature disentanglement, and pyramid supervision disentanglement. Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. stacked_convs (int): The number of stacked Conv. Defaults to 4. conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for convolution layer. Defaults to None. use_dcn (bool): Use dcn, Same as ATSS when False. Defaults to True. norm_cfg (:obj:`ConfigDict` or dict): Normal config of ddod head. Defaults to dict(type='GN', num_groups=32, requires_grad=True). loss_iou (:obj:`ConfigDict` or dict): Config of IoU loss. Defaults to dict(type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0). """ def __init__(self, num_classes: int, in_channels: int, stacked_convs: int = 4, conv_cfg: OptConfigType = None, use_dcn: bool = True, norm_cfg: ConfigType = dict( type='GN', num_groups=32, requires_grad=True), loss_iou: ConfigType = dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), **kwargs) -> None: self.stacked_convs = stacked_convs self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.use_dcn = use_dcn super().__init__(num_classes, in_channels, **kwargs) if self.train_cfg: self.cls_assigner = TASK_UTILS.build(self.train_cfg['assigner']) self.reg_assigner = TASK_UTILS.build( self.train_cfg['reg_assigner']) self.loss_iou = MODELS.build(loss_iou) def _init_layers(self) -> None: """Initialize layers of the head.""" self.relu = nn.ReLU(inplace=True) self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels self.cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=dict(type='DCN', deform_groups=1) if i == 0 and self.use_dcn else self.conv_cfg, norm_cfg=self.norm_cfg)) self.reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=dict(type='DCN', deform_groups=1) if i == 0 and self.use_dcn else self.conv_cfg, norm_cfg=self.norm_cfg)) self.atss_cls = nn.Conv2d( self.feat_channels, self.num_base_priors * self.cls_out_channels, 3, padding=1) self.atss_reg = nn.Conv2d( self.feat_channels, self.num_base_priors * 4, 3, padding=1) self.atss_iou = nn.Conv2d( self.feat_channels, self.num_base_priors * 1, 3, padding=1) self.scales = nn.ModuleList( [Scale(1.0) for _ in self.prior_generator.strides]) # we use the global list in loss self.cls_num_pos_samples_per_level = [ 0. for _ in range(len(self.prior_generator.strides)) ] self.reg_num_pos_samples_per_level = [ 0. for _ in range(len(self.prior_generator.strides)) ] def init_weights(self) -> None: """Initialize weights of the head.""" for m in self.cls_convs: normal_init(m.conv, std=0.01) for m in self.reg_convs: normal_init(m.conv, std=0.01) normal_init(self.atss_reg, std=0.01) normal_init(self.atss_iou, std=0.01) bias_cls = bias_init_with_prob(0.01) normal_init(self.atss_cls, std=0.01, bias=bias_cls) def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]: """Forward features from the upstream network. Args: x (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: A tuple of classification scores, bbox predictions, and iou predictions. - cls_scores (list[Tensor]): Classification scores for all \ scale levels, each is a 4D-tensor, the channels number is \ num_base_priors * num_classes. - bbox_preds (list[Tensor]): Box energies / deltas for all \ scale levels, each is a 4D-tensor, the channels number is \ num_base_priors * 4. - iou_preds (list[Tensor]): IoU scores for all scale levels, \ each is a 4D-tensor, the channels number is num_base_priors * 1. """ return multi_apply(self.forward_single, x, self.scales) def forward_single(self, x: Tensor, scale: Scale) -> Sequence[Tensor]: """Forward feature of a single scale level. Args: x (Tensor): Features of a single scale level. scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize the bbox prediction. Returns: tuple: - cls_score (Tensor): Cls scores for a single scale level \ the channels number is num_base_priors * num_classes. - bbox_pred (Tensor): Box energies / deltas for a single \ scale level, the channels number is num_base_priors * 4. - iou_pred (Tensor): Iou for a single scale level, the \ channel number is (N, num_base_priors * 1, H, W). """ cls_feat = x reg_feat = x for cls_conv in self.cls_convs: cls_feat = cls_conv(cls_feat) for reg_conv in self.reg_convs: reg_feat = reg_conv(reg_feat) cls_score = self.atss_cls(cls_feat) # we just follow atss, not apply exp in bbox_pred bbox_pred = scale(self.atss_reg(reg_feat)).float() iou_pred = self.atss_iou(reg_feat) return cls_score, bbox_pred, iou_pred def loss_cls_by_feat_single(self, cls_score: Tensor, labels: Tensor, label_weights: Tensor, reweight_factor: List[float], avg_factor: float) -> Tuple[Tensor]: """Compute cls loss of a single scale level. Args: cls_score (Tensor): Box scores for each scale level Has shape (N, num_base_priors * num_classes, H, W). labels (Tensor): Labels of each anchors with shape (N, num_total_anchors). label_weights (Tensor): Label weights of each anchor with shape (N, num_total_anchors) reweight_factor (List[float]): Reweight factor for cls and reg loss. avg_factor (float): Average factor that is used to average the loss. When using sampling method, avg_factor is usually the sum of positive and negative priors. When using `PseudoSampler`, `avg_factor` is usually equal to the number of positive priors. Returns: Tuple[Tensor]: A tuple of loss components. """ cls_score = cls_score.permute(0, 2, 3, 1).reshape( -1, self.cls_out_channels).contiguous() labels = labels.reshape(-1) label_weights = label_weights.reshape(-1) loss_cls = self.loss_cls( cls_score, labels, label_weights, avg_factor=avg_factor) return reweight_factor * loss_cls, def loss_reg_by_feat_single(self, anchors: Tensor, bbox_pred: Tensor, iou_pred: Tensor, labels, label_weights: Tensor, bbox_targets: Tensor, bbox_weights: Tensor, reweight_factor: List[float], avg_factor: float) -> Tuple[Tensor, Tensor]: """Compute reg loss of a single scale level based on the features extracted by the detection head. Args: anchors (Tensor): Box reference for each scale level with shape (N, num_total_anchors, 4). bbox_pred (Tensor): Box energies / deltas for each scale level with shape (N, num_base_priors * 4, H, W). iou_pred (Tensor): Iou for a single scale level, the channel number is (N, num_base_priors * 1, H, W). labels (Tensor): Labels of each anchors with shape (N, num_total_anchors). label_weights (Tensor): Label weights of each anchor with shape (N, num_total_anchors) bbox_targets (Tensor): BBox regression targets of each anchor weight shape (N, num_total_anchors, 4). bbox_weights (Tensor): BBox weights of all anchors in the image with shape (N, 4) reweight_factor (List[float]): Reweight factor for cls and reg loss. avg_factor (float): Average factor that is used to average the loss. When using sampling method, avg_factor is usually the sum of positive and negative priors. When using `PseudoSampler`, `avg_factor` is usually equal to the number of positive priors. Returns: Tuple[Tensor, Tensor]: A tuple of loss components. """ anchors = anchors.reshape(-1, 4) bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) iou_pred = iou_pred.permute(0, 2, 3, 1).reshape(-1, ) bbox_targets = bbox_targets.reshape(-1, 4) bbox_weights = bbox_weights.reshape(-1, 4) labels = labels.reshape(-1) label_weights = label_weights.reshape(-1) iou_targets = label_weights.new_zeros(labels.shape) iou_weights = label_weights.new_zeros(labels.shape) iou_weights[(bbox_weights.sum(axis=1) > 0).nonzero( as_tuple=False)] = 1. # FG cat_id: [0, num_classes -1], BG cat_id: num_classes bg_class_ind = self.num_classes pos_inds = ((labels >= 0) & (labels < bg_class_ind)).nonzero(as_tuple=False).squeeze(1) if len(pos_inds) > 0: pos_bbox_targets = bbox_targets[pos_inds] pos_bbox_pred = bbox_pred[pos_inds] pos_anchors = anchors[pos_inds] pos_decode_bbox_pred = self.bbox_coder.decode( pos_anchors, pos_bbox_pred) pos_decode_bbox_targets = self.bbox_coder.decode( pos_anchors, pos_bbox_targets) # regression loss loss_bbox = self.loss_bbox( pos_decode_bbox_pred, pos_decode_bbox_targets, avg_factor=avg_factor) iou_targets[pos_inds] = bbox_overlaps( pos_decode_bbox_pred.detach(), pos_decode_bbox_targets, is_aligned=True) loss_iou = self.loss_iou( iou_pred, iou_targets, iou_weights, avg_factor=avg_factor) else: loss_bbox = bbox_pred.sum() * 0 loss_iou = iou_pred.sum() * 0 return reweight_factor * loss_bbox, reweight_factor * loss_iou def calc_reweight_factor(self, labels_list: List[Tensor]) -> List[float]: """Compute reweight_factor for regression and classification loss.""" # get pos samples for each level bg_class_ind = self.num_classes for ii, each_level_label in enumerate(labels_list): pos_inds = ((each_level_label >= 0) & (each_level_label < bg_class_ind)).nonzero( as_tuple=False).squeeze(1) self.cls_num_pos_samples_per_level[ii] += len(pos_inds) # get reweight factor from 1 ~ 2 with bilinear interpolation min_pos_samples = min(self.cls_num_pos_samples_per_level) max_pos_samples = max(self.cls_num_pos_samples_per_level) interval = 1. / (max_pos_samples - min_pos_samples + 1e-10) reweight_factor_per_level = [] for pos_samples in self.cls_num_pos_samples_per_level: factor = 2. - (pos_samples - min_pos_samples) * interval reweight_factor_per_level.append(factor) return reweight_factor_per_level def loss_by_feat( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], iou_preds: List[Tensor], batch_gt_instances: InstanceList, batch_img_metas: List[dict], batch_gt_instances_ignore: OptInstanceList = None) -> dict: """Calculate the loss based on the features extracted by the detection head. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_base_priors * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_base_priors * 4, H, W) iou_preds (list[Tensor]): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, 1, H, W). batch_gt_instances (list[:obj:`InstanceData`]): Batch of gt_instance. It usually includes ``bboxes`` and ``labels`` attributes. batch_img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): Batch of gt_instances_ignore. It includes ``bboxes`` attribute data that is ignored during training and testing. Defaults to None. Returns: dict[str, Tensor]: A dictionary of loss components. """ featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] assert len(featmap_sizes) == self.prior_generator.num_levels device = cls_scores[0].device anchor_list, valid_flag_list = self.get_anchors( featmap_sizes, batch_img_metas, device=device) # calculate common vars for cls and reg assigners at once targets_com = self.process_predictions_and_anchors( anchor_list, valid_flag_list, cls_scores, bbox_preds, batch_img_metas, batch_gt_instances_ignore) (anchor_list, valid_flag_list, num_level_anchors_list, cls_score_list, bbox_pred_list, batch_gt_instances_ignore) = targets_com # classification branch assigner cls_targets = self.get_cls_targets( anchor_list, valid_flag_list, num_level_anchors_list, cls_score_list, bbox_pred_list, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore=batch_gt_instances_ignore) (cls_anchor_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, avg_factor) = cls_targets avg_factor = reduce_mean( torch.tensor(avg_factor, dtype=torch.float, device=device)).item() avg_factor = max(avg_factor, 1.0) reweight_factor_per_level = self.calc_reweight_factor(labels_list) cls_losses_cls, = multi_apply( self.loss_cls_by_feat_single, cls_scores, labels_list, label_weights_list, reweight_factor_per_level, avg_factor=avg_factor) # regression branch assigner reg_targets = self.get_reg_targets( anchor_list, valid_flag_list, num_level_anchors_list, cls_score_list, bbox_pred_list, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore=batch_gt_instances_ignore) (reg_anchor_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, avg_factor) = reg_targets avg_factor = reduce_mean( torch.tensor(avg_factor, dtype=torch.float, device=device)).item() avg_factor = max(avg_factor, 1.0) reweight_factor_per_level = self.calc_reweight_factor(labels_list) reg_losses_bbox, reg_losses_iou = multi_apply( self.loss_reg_by_feat_single, reg_anchor_list, bbox_preds, iou_preds, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, reweight_factor_per_level, avg_factor=avg_factor) return dict( loss_cls=cls_losses_cls, loss_bbox=reg_losses_bbox, loss_iou=reg_losses_iou) def process_predictions_and_anchors( self, anchor_list: List[List[Tensor]], valid_flag_list: List[List[Tensor]], cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_img_metas: List[dict], batch_gt_instances_ignore: OptInstanceList = None) -> tuple: """Compute common vars for regression and classification targets. Args: anchor_list (List[List[Tensor]]): anchors of each image. valid_flag_list (List[List[Tensor]]): Valid flags of each image. cls_scores (List[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * 4. batch_img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): Batch of gt_instances_ignore. It includes ``bboxes`` attribute data that is ignored during training and testing. Defaults to None. Return: tuple[Tensor]: A tuple of common loss vars. """ num_imgs = len(batch_img_metas) assert len(anchor_list) == len(valid_flag_list) == num_imgs # anchor number of multi levels num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] num_level_anchors_list = [num_level_anchors] * num_imgs anchor_list_ = [] valid_flag_list_ = [] # concat all level anchors and flags to a single tensor for i in range(num_imgs): assert len(anchor_list[i]) == len(valid_flag_list[i]) anchor_list_.append(torch.cat(anchor_list[i])) valid_flag_list_.append(torch.cat(valid_flag_list[i])) # compute targets for each image if batch_gt_instances_ignore is None: batch_gt_instances_ignore = [None for _ in range(num_imgs)] num_levels = len(cls_scores) cls_score_list = [] bbox_pred_list = [] mlvl_cls_score_list = [ cls_score.permute(0, 2, 3, 1).reshape( num_imgs, -1, self.num_base_priors * self.cls_out_channels) for cls_score in cls_scores ] mlvl_bbox_pred_list = [ bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, self.num_base_priors * 4) for bbox_pred in bbox_preds ] for i in range(num_imgs): mlvl_cls_tensor_list = [ mlvl_cls_score_list[j][i] for j in range(num_levels) ] mlvl_bbox_tensor_list = [ mlvl_bbox_pred_list[j][i] for j in range(num_levels) ] cat_mlvl_cls_score = torch.cat(mlvl_cls_tensor_list, dim=0) cat_mlvl_bbox_pred = torch.cat(mlvl_bbox_tensor_list, dim=0) cls_score_list.append(cat_mlvl_cls_score) bbox_pred_list.append(cat_mlvl_bbox_pred) return (anchor_list_, valid_flag_list_, num_level_anchors_list, cls_score_list, bbox_pred_list, batch_gt_instances_ignore) def get_cls_targets(self, anchor_list: List[Tensor], valid_flag_list: List[Tensor], num_level_anchors_list: List[int], cls_score_list: List[Tensor], bbox_pred_list: List[Tensor], batch_gt_instances: InstanceList, batch_img_metas: List[dict], batch_gt_instances_ignore: OptInstanceList = None, unmap_outputs: bool = True) -> tuple: """Get cls targets for DDOD head. This method is almost the same as `AnchorHead.get_targets()`. Besides returning the targets as the parent method does, it also returns the anchors as the first element of the returned tuple. Args: anchor_list (list[Tensor]): anchors of each image. valid_flag_list (list[Tensor]): Valid flags of each image. num_level_anchors_list (list[Tensor]): Number of anchors of each scale level of all image. cls_score_list (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * num_classes. bbox_pred_list (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * 4. batch_gt_instances (list[:obj:`InstanceData`]): Batch of gt_instance. It usually includes ``bboxes`` and ``labels`` attributes. batch_img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): Batch of gt_instances_ignore. It includes ``bboxes`` attribute data that is ignored during training and testing. Defaults to None. unmap_outputs (bool): Whether to map outputs back to the original set of anchors. Return: tuple[Tensor]: A tuple of cls targets components. """ (all_anchors, all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, pos_inds_list, neg_inds_list, sampling_results_list) = multi_apply( self._get_targets_single, anchor_list, valid_flag_list, cls_score_list, bbox_pred_list, num_level_anchors_list, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore, unmap_outputs=unmap_outputs, is_cls_assigner=True) # Get `avg_factor` of all images, which calculate in `SamplingResult`. # When using sampling method, avg_factor is usually the sum of # positive and negative priors. When using `PseudoSampler`, # `avg_factor` is usually equal to the number of positive priors. avg_factor = sum( [results.avg_factor for results in sampling_results_list]) # split targets to a list w.r.t. multiple levels anchors_list = images_to_levels(all_anchors, num_level_anchors_list[0]) labels_list = images_to_levels(all_labels, num_level_anchors_list[0]) label_weights_list = images_to_levels(all_label_weights, num_level_anchors_list[0]) bbox_targets_list = images_to_levels(all_bbox_targets, num_level_anchors_list[0]) bbox_weights_list = images_to_levels(all_bbox_weights, num_level_anchors_list[0]) return (anchors_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, avg_factor) def get_reg_targets(self, anchor_list: List[Tensor], valid_flag_list: List[Tensor], num_level_anchors_list: List[int], cls_score_list: List[Tensor], bbox_pred_list: List[Tensor], batch_gt_instances: InstanceList, batch_img_metas: List[dict], batch_gt_instances_ignore: OptInstanceList = None, unmap_outputs: bool = True) -> tuple: """Get reg targets for DDOD head. This method is almost the same as `AnchorHead.get_targets()` when is_cls_assigner is False. Besides returning the targets as the parent method does, it also returns the anchors as the first element of the returned tuple. Args: anchor_list (list[Tensor]): anchors of each image. valid_flag_list (list[Tensor]): Valid flags of each image. num_level_anchors_list (list[Tensor]): Number of anchors of each scale level of all image. cls_score_list (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * num_classes. bbox_pred_list (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * 4. batch_gt_instances (list[:obj:`InstanceData`]): Batch of gt_instance. It usually includes ``bboxes`` and ``labels`` attributes. batch_img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): Batch of gt_instances_ignore. It includes ``bboxes`` attribute data that is ignored during training and testing. Defaults to None. unmap_outputs (bool): Whether to map outputs back to the original set of anchors. Return: tuple[Tensor]: A tuple of reg targets components. """ (all_anchors, all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, pos_inds_list, neg_inds_list, sampling_results_list) = multi_apply( self._get_targets_single, anchor_list, valid_flag_list, cls_score_list, bbox_pred_list, num_level_anchors_list, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore, unmap_outputs=unmap_outputs, is_cls_assigner=False) # Get `avg_factor` of all images, which calculate in `SamplingResult`. # When using sampling method, avg_factor is usually the sum of # positive and negative priors. When using `PseudoSampler`, # `avg_factor` is usually equal to the number of positive priors. avg_factor = sum( [results.avg_factor for results in sampling_results_list]) # split targets to a list w.r.t. multiple levels anchors_list = images_to_levels(all_anchors, num_level_anchors_list[0]) labels_list = images_to_levels(all_labels, num_level_anchors_list[0]) label_weights_list = images_to_levels(all_label_weights, num_level_anchors_list[0]) bbox_targets_list = images_to_levels(all_bbox_targets, num_level_anchors_list[0]) bbox_weights_list = images_to_levels(all_bbox_weights, num_level_anchors_list[0]) return (anchors_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, avg_factor) def _get_targets_single(self, flat_anchors: Tensor, valid_flags: Tensor, cls_scores: Tensor, bbox_preds: Tensor, num_level_anchors: List[int], gt_instances: InstanceData, img_meta: dict, gt_instances_ignore: Optional[InstanceData] = None, unmap_outputs: bool = True, is_cls_assigner: bool = True) -> tuple: """Compute regression, classification targets for anchors in a single image. Args: flat_anchors (Tensor): Multi-level anchors of the image, which are concatenated into a single tensor of shape (num_base_priors, 4). valid_flags (Tensor): Multi level valid flags of the image, which are concatenated into a single tensor of shape (num_base_priors,). cls_scores (Tensor): Classification scores for all scale levels of the image. bbox_preds (Tensor): Box energies / deltas for all scale levels of the image. num_level_anchors (List[int]): Number of anchors of each scale level. gt_instances (:obj:`InstanceData`): Ground truth of instance annotations. It usually includes ``bboxes`` and ``labels`` attributes. img_meta (dict): Meta information for current image. gt_instances_ignore (:obj:`InstanceData`, optional): Instances to be ignored during training. It includes ``bboxes`` attribute data that is ignored during training and testing. Defaults to None. unmap_outputs (bool): Whether to map outputs back to the original set of anchors. Defaults to True. is_cls_assigner (bool): Classification or regression. Defaults to True. Returns: tuple: N is the number of total anchors in the image. - anchors (Tensor): all anchors in the image with shape (N, 4). - labels (Tensor): Labels of all anchors in the image with \ shape (N, ). - label_weights (Tensor): Label weights of all anchor in the \ image with shape (N, ). - bbox_targets (Tensor): BBox targets of all anchors in the \ image with shape (N, 4). - bbox_weights (Tensor): BBox weights of all anchors in the \ image with shape (N, 4) - pos_inds (Tensor): Indices of positive anchor with shape \ (num_pos, ). - neg_inds (Tensor): Indices of negative anchor with shape \ (num_neg, ). - sampling_result (:obj:`SamplingResult`): Sampling results. """ inside_flags = anchor_inside_flags(flat_anchors, valid_flags, img_meta['img_shape'][:2], self.train_cfg['allowed_border']) if not inside_flags.any(): raise ValueError( 'There is no valid anchor inside the image boundary. Please ' 'check the image size and anchor sizes, or set ' '``allowed_border`` to -1 to skip the condition.') # assign gt and sample anchors anchors = flat_anchors[inside_flags, :] num_level_anchors_inside = self.get_num_level_anchors_inside( num_level_anchors, inside_flags) bbox_preds_valid = bbox_preds[inside_flags, :] cls_scores_valid = cls_scores[inside_flags, :] assigner = self.cls_assigner if is_cls_assigner else self.reg_assigner # decode prediction out of assigner bbox_preds_valid = self.bbox_coder.decode(anchors, bbox_preds_valid) pred_instances = InstanceData( priors=anchors, bboxes=bbox_preds_valid, scores=cls_scores_valid) assign_result = assigner.assign( pred_instances=pred_instances, num_level_priors=num_level_anchors_inside, gt_instances=gt_instances, gt_instances_ignore=gt_instances_ignore) sampling_result = self.sampler.sample( assign_result=assign_result, pred_instances=pred_instances, gt_instances=gt_instances) num_valid_anchors = anchors.shape[0] bbox_targets = torch.zeros_like(anchors) bbox_weights = torch.zeros_like(anchors) labels = anchors.new_full((num_valid_anchors, ), self.num_classes, dtype=torch.long) label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) pos_inds = sampling_result.pos_inds neg_inds = sampling_result.neg_inds if len(pos_inds) > 0: pos_bbox_targets = self.bbox_coder.encode( sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) bbox_targets[pos_inds, :] = pos_bbox_targets bbox_weights[pos_inds, :] = 1.0 labels[pos_inds] = sampling_result.pos_gt_labels if self.train_cfg['pos_weight'] <= 0: label_weights[pos_inds] = 1.0 else: label_weights[pos_inds] = self.train_cfg['pos_weight'] if len(neg_inds) > 0: label_weights[neg_inds] = 1.0 # map up to original set of anchors if unmap_outputs: num_total_anchors = flat_anchors.size(0) anchors = unmap(anchors, num_total_anchors, inside_flags) labels = unmap( labels, num_total_anchors, inside_flags, fill=self.num_classes) label_weights = unmap(label_weights, num_total_anchors, inside_flags) bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) return (anchors, labels, label_weights, bbox_targets, bbox_weights, pos_inds, neg_inds, sampling_result) def get_num_level_anchors_inside(self, num_level_anchors: List[int], inside_flags: Tensor) -> List[int]: """Get the anchors of each scale level inside. Args: num_level_anchors (list[int]): Number of anchors of each scale level. inside_flags (Tensor): Multi level inside flags of the image, which are concatenated into a single tensor of shape (num_base_priors,). Returns: list[int]: Number of anchors of each scale level inside. """ split_inside_flags = torch.split(inside_flags, num_level_anchors) num_level_anchors_inside = [ int(flags.sum()) for flags in split_inside_flags ] return num_level_anchors_inside