# Copyright (c) OpenMMLab. All rights reserved. import math from typing import Sequence, Tuple import torch import torch.nn as nn from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule from mmengine.model import BaseModule from torch import Tensor from mmdet.registry import MODELS from mmdet.utils import ConfigType, OptMultiConfig from ..layers import CSPLayer @MODELS.register_module() class CSPNeXtPAFPN(BaseModule): """Path Aggregation Network with CSPNeXt blocks. Args: in_channels (Sequence[int]): Number of input channels per scale. out_channels (int): Number of output channels (used at each scale) num_csp_blocks (int): Number of bottlenecks in CSPLayer. Defaults to 3. use_depthwise (bool): Whether to use depthwise separable convolution in blocks. Defaults to False. expand_ratio (float): Ratio to adjust the number of channels of the hidden layer. Default: 0.5 upsample_cfg (dict): Config dict for interpolate layer. Default: `dict(scale_factor=2, mode='nearest')` conv_cfg (dict, optional): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN') act_cfg (dict): Config dict for activation layer. Default: dict(type='Swish') init_cfg (dict or list[dict], optional): Initialization config dict. Default: None. """ def __init__( self, in_channels: Sequence[int], out_channels: int, num_csp_blocks: int = 3, use_depthwise: bool = False, expand_ratio: float = 0.5, upsample_cfg: ConfigType = dict(scale_factor=2, mode='nearest'), conv_cfg: bool = None, norm_cfg: ConfigType = dict(type='BN', momentum=0.03, eps=0.001), act_cfg: ConfigType = dict(type='Swish'), init_cfg: OptMultiConfig = dict( type='Kaiming', layer='Conv2d', a=math.sqrt(5), distribution='uniform', mode='fan_in', nonlinearity='leaky_relu') ) -> None: super().__init__(init_cfg) self.in_channels = in_channels self.out_channels = out_channels conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule # build top-down blocks self.upsample = nn.Upsample(**upsample_cfg) self.reduce_layers = nn.ModuleList() self.top_down_blocks = nn.ModuleList() for idx in range(len(in_channels) - 1, 0, -1): self.reduce_layers.append( ConvModule( in_channels[idx], in_channels[idx - 1], 1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) self.top_down_blocks.append( CSPLayer( in_channels[idx - 1] * 2, in_channels[idx - 1], num_blocks=num_csp_blocks, add_identity=False, use_depthwise=use_depthwise, use_cspnext_block=True, expand_ratio=expand_ratio, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) # build bottom-up blocks self.downsamples = nn.ModuleList() self.bottom_up_blocks = nn.ModuleList() for idx in range(len(in_channels) - 1): self.downsamples.append( conv( in_channels[idx], in_channels[idx], 3, stride=2, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) self.bottom_up_blocks.append( CSPLayer( in_channels[idx] * 2, in_channels[idx + 1], num_blocks=num_csp_blocks, add_identity=False, use_depthwise=use_depthwise, use_cspnext_block=True, expand_ratio=expand_ratio, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) self.out_convs = nn.ModuleList() for i in range(len(in_channels)): self.out_convs.append( conv( in_channels[i], out_channels, 3, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) def forward(self, inputs: Tuple[Tensor, ...]) -> Tuple[Tensor, ...]: """ Args: inputs (tuple[Tensor]): input features. Returns: tuple[Tensor]: YOLOXPAFPN features. """ assert len(inputs) == len(self.in_channels) # top-down path inner_outs = [inputs[-1]] for idx in range(len(self.in_channels) - 1, 0, -1): feat_heigh = inner_outs[0] feat_low = inputs[idx - 1] feat_heigh = self.reduce_layers[len(self.in_channels) - 1 - idx]( feat_heigh) inner_outs[0] = feat_heigh upsample_feat = self.upsample(feat_heigh) inner_out = self.top_down_blocks[len(self.in_channels) - 1 - idx]( torch.cat([upsample_feat, feat_low], 1)) inner_outs.insert(0, inner_out) # bottom-up path outs = [inner_outs[0]] for idx in range(len(self.in_channels) - 1): feat_low = outs[-1] feat_height = inner_outs[idx + 1] downsample_feat = self.downsamples[idx](feat_low) out = self.bottom_up_blocks[idx]( torch.cat([downsample_feat, feat_height], 1)) outs.append(out) # out convs for idx, conv in enumerate(self.out_convs): outs[idx] = conv(outs[idx]) return tuple(outs)