# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional import torch import torch.nn as nn from torch import Tensor from mmdet.registry import MODELS from .utils import weighted_loss @weighted_loss def smooth_l1_loss(pred: Tensor, target: Tensor, beta: float = 1.0) -> Tensor: """Smooth L1 loss. Args: pred (Tensor): The prediction. target (Tensor): The learning target of the prediction. beta (float, optional): The threshold in the piecewise function. Defaults to 1.0. Returns: Tensor: Calculated loss """ assert beta > 0 if target.numel() == 0: return pred.sum() * 0 assert pred.size() == target.size() diff = torch.abs(pred - target) loss = torch.where(diff < beta, 0.5 * diff * diff / beta, diff - 0.5 * beta) return loss @weighted_loss def l1_loss(pred: Tensor, target: Tensor) -> Tensor: """L1 loss. Args: pred (Tensor): The prediction. target (Tensor): The learning target of the prediction. Returns: Tensor: Calculated loss """ if target.numel() == 0: return pred.sum() * 0 assert pred.size() == target.size() loss = torch.abs(pred - target) return loss @MODELS.register_module() class SmoothL1Loss(nn.Module): """Smooth L1 loss. Args: beta (float, optional): The threshold in the piecewise function. Defaults to 1.0. reduction (str, optional): The method to reduce the loss. Options are "none", "mean" and "sum". Defaults to "mean". loss_weight (float, optional): The weight of loss. """ def __init__(self, beta: float = 1.0, reduction: str = 'mean', loss_weight: float = 1.0) -> None: super().__init__() self.beta = beta self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred: Tensor, target: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[int] = None, reduction_override: Optional[str] = None, **kwargs) -> Tensor: """Forward function. Args: pred (Tensor): The prediction. target (Tensor): The learning target of the prediction. weight (Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. Returns: Tensor: Calculated loss """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_bbox = self.loss_weight * smooth_l1_loss( pred, target, weight, beta=self.beta, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss_bbox @MODELS.register_module() class L1Loss(nn.Module): """L1 loss. Args: reduction (str, optional): The method to reduce the loss. Options are "none", "mean" and "sum". loss_weight (float, optional): The weight of loss. """ def __init__(self, reduction: str = 'mean', loss_weight: float = 1.0) -> None: super().__init__() self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred: Tensor, target: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[int] = None, reduction_override: Optional[str] = None) -> Tensor: """Forward function. Args: pred (Tensor): The prediction. target (Tensor): The learning target of the prediction. weight (Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. Returns: Tensor: Calculated loss """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_bbox = self.loss_weight * l1_loss( pred, target, weight, reduction=reduction, avg_factor=avg_factor) return loss_bbox