# dataset settings dataset_type = 'OpenImagesDataset' data_root = 'data/OpenImages/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1024, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1024, 800), keep_ratio=True), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), # TODO: find a better way to collect image_level_labels dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'instances', 'image_level_labels')) ] train_dataloader = dict( batch_size=2, num_workers=0, # workers_per_gpu > 0 may occur out of memory persistent_workers=False, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/oidv6-train-annotations-bbox.csv', data_prefix=dict(img='OpenImages/train/'), label_file='annotations/class-descriptions-boxable.csv', hierarchy_file='annotations/bbox_labels_600_hierarchy.json', meta_file='annotations/train-image-metas.pkl', pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=0, persistent_workers=False, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/validation-annotations-bbox.csv', data_prefix=dict(img='OpenImages/validation/'), label_file='annotations/class-descriptions-boxable.csv', hierarchy_file='annotations/bbox_labels_600_hierarchy.json', meta_file='annotations/validation-image-metas.pkl', image_level_ann_file='annotations/validation-' 'annotations-human-imagelabels-boxable.csv', pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='OpenImagesMetric', iou_thrs=0.5, ioa_thrs=0.5, use_group_of=True, get_supercategory=True) test_evaluator = val_evaluator