# Copyright (c) OpenMMLab. All rights reserved. import numpy as np from mmcv.transforms import to_tensor from mmcv.transforms.base import BaseTransform from mmengine.structures import InstanceData, PixelData from mmdet.registry import TRANSFORMS from mmdet.structures import DetDataSample from mmdet.structures.bbox import BaseBoxes @TRANSFORMS.register_module() class PackDetInputs(BaseTransform): """Pack the inputs data for the detection / semantic segmentation / panoptic segmentation. The ``img_meta`` item is always populated. The contents of the ``img_meta`` dictionary depends on ``meta_keys``. By default this includes: - ``img_id``: id of the image - ``img_path``: path to the image file - ``ori_shape``: original shape of the image as a tuple (h, w) - ``img_shape``: shape of the image input to the network as a tuple \ (h, w). Note that images may be zero padded on the \ bottom/right if the batch tensor is larger than this shape. - ``scale_factor``: a float indicating the preprocessing scale - ``flip``: a boolean indicating if image flip transform was used - ``flip_direction``: the flipping direction Args: meta_keys (Sequence[str], optional): Meta keys to be converted to ``mmcv.DataContainer`` and collected in ``data[img_metas]``. Default: ``('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip', 'flip_direction')`` """ mapping_table = { 'gt_bboxes': 'bboxes', 'gt_bboxes_labels': 'labels', 'gt_masks': 'masks' } def __init__(self, meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip', 'flip_direction')): self.meta_keys = meta_keys def transform(self, results: dict) -> dict: """Method to pack the input data. Args: results (dict): Result dict from the data pipeline. Returns: dict: - 'inputs' (obj:`torch.Tensor`): The forward data of models. - 'data_sample' (obj:`DetDataSample`): The annotation info of the sample. """ packed_results = dict() if 'img' in results: img = results['img'] if len(img.shape) < 3: img = np.expand_dims(img, -1) # To improve the computational speed by by 3-5 times, apply: # If image is not contiguous, use # `numpy.transpose()` followed by `numpy.ascontiguousarray()` # If image is already contiguous, use # `torch.permute()` followed by `torch.contiguous()` # Refer to https://github.com/open-mmlab/mmdetection/pull/9533 # for more details if not img.flags.c_contiguous: img = np.ascontiguousarray(img.transpose(2, 0, 1)) img = to_tensor(img) else: img = to_tensor(img).permute(2, 0, 1).contiguous() packed_results['inputs'] = img if 'gt_ignore_flags' in results: valid_idx = np.where(results['gt_ignore_flags'] == 0)[0] ignore_idx = np.where(results['gt_ignore_flags'] == 1)[0] data_sample = DetDataSample() instance_data = InstanceData() ignore_instance_data = InstanceData() for key in self.mapping_table.keys(): if key not in results: continue if key == 'gt_masks' or isinstance(results[key], BaseBoxes): if 'gt_ignore_flags' in results: instance_data[ self.mapping_table[key]] = results[key][valid_idx] ignore_instance_data[ self.mapping_table[key]] = results[key][ignore_idx] else: instance_data[self.mapping_table[key]] = results[key] else: if 'gt_ignore_flags' in results: instance_data[self.mapping_table[key]] = to_tensor( results[key][valid_idx]) ignore_instance_data[self.mapping_table[key]] = to_tensor( results[key][ignore_idx]) else: instance_data[self.mapping_table[key]] = to_tensor( results[key]) data_sample.gt_instances = instance_data data_sample.ignored_instances = ignore_instance_data if 'proposals' in results: proposals = InstanceData( bboxes=to_tensor(results['proposals']), scores=to_tensor(results['proposals_scores'])) data_sample.proposals = proposals if 'gt_seg_map' in results: gt_sem_seg_data = dict( sem_seg=to_tensor(results['gt_seg_map'][None, ...].copy())) data_sample.gt_sem_seg = PixelData(**gt_sem_seg_data) img_meta = {} for key in self.meta_keys: assert key in results, f'`{key}` is not found in `results`, ' \ f'the valid keys are {list(results)}.' img_meta[key] = results[key] data_sample.set_metainfo(img_meta) packed_results['data_samples'] = data_sample return packed_results def __repr__(self) -> str: repr_str = self.__class__.__name__ repr_str += f'(meta_keys={self.meta_keys})' return repr_str @TRANSFORMS.register_module() class ToTensor: """Convert some results to :obj:`torch.Tensor` by given keys. Args: keys (Sequence[str]): Keys that need to be converted to Tensor. """ def __init__(self, keys): self.keys = keys def __call__(self, results): """Call function to convert data in results to :obj:`torch.Tensor`. Args: results (dict): Result dict contains the data to convert. Returns: dict: The result dict contains the data converted to :obj:`torch.Tensor`. """ for key in self.keys: results[key] = to_tensor(results[key]) return results def __repr__(self): return self.__class__.__name__ + f'(keys={self.keys})' @TRANSFORMS.register_module() class ImageToTensor: """Convert image to :obj:`torch.Tensor` by given keys. The dimension order of input image is (H, W, C). The pipeline will convert it to (C, H, W). If only 2 dimension (H, W) is given, the output would be (1, H, W). Args: keys (Sequence[str]): Key of images to be converted to Tensor. """ def __init__(self, keys): self.keys = keys def __call__(self, results): """Call function to convert image in results to :obj:`torch.Tensor` and transpose the channel order. Args: results (dict): Result dict contains the image data to convert. Returns: dict: The result dict contains the image converted to :obj:`torch.Tensor` and permuted to (C, H, W) order. """ for key in self.keys: img = results[key] if len(img.shape) < 3: img = np.expand_dims(img, -1) results[key] = to_tensor(img).permute(2, 0, 1).contiguous() return results def __repr__(self): return self.__class__.__name__ + f'(keys={self.keys})' @TRANSFORMS.register_module() class Transpose: """Transpose some results by given keys. Args: keys (Sequence[str]): Keys of results to be transposed. order (Sequence[int]): Order of transpose. """ def __init__(self, keys, order): self.keys = keys self.order = order def __call__(self, results): """Call function to transpose the channel order of data in results. Args: results (dict): Result dict contains the data to transpose. Returns: dict: The result dict contains the data transposed to \ ``self.order``. """ for key in self.keys: results[key] = results[key].transpose(self.order) return results def __repr__(self): return self.__class__.__name__ + \ f'(keys={self.keys}, order={self.order})' @TRANSFORMS.register_module() class WrapFieldsToLists: """Wrap fields of the data dictionary into lists for evaluation. This class can be used as a last step of a test or validation pipeline for single image evaluation or inference. Example: >>> test_pipeline = [ >>> dict(type='LoadImageFromFile'), >>> dict(type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), >>> dict(type='Pad', size_divisor=32), >>> dict(type='ImageToTensor', keys=['img']), >>> dict(type='Collect', keys=['img']), >>> dict(type='WrapFieldsToLists') >>> ] """ def __call__(self, results): """Call function to wrap fields into lists. Args: results (dict): Result dict contains the data to wrap. Returns: dict: The result dict where value of ``self.keys`` are wrapped \ into list. """ # Wrap dict fields into lists for key, val in results.items(): results[key] = [val] return results def __repr__(self): return f'{self.__class__.__name__}()'