# Copyright (c) OpenMMLab. All rights reserved. import inspect from copy import deepcopy from math import ceil from numbers import Number from typing import List, Optional, Sequence, Tuple, Union import mmcv import numpy as np from mmcv.transforms import BaseTransform, Compose, RandomChoice from mmcv.transforms.utils import cache_randomness from mmengine.utils import is_list_of, is_seq_of from mmcls.registry import TRANSFORMS def merge_hparams(policy: dict, hparams: dict) -> dict: """Merge hyperparameters into policy config. Only merge partial hyperparameters required of the policy. Args: policy (dict): Original policy config dict. hparams (dict): Hyperparameters need to be merged. Returns: dict: Policy config dict after adding ``hparams``. """ policy = deepcopy(policy) op = TRANSFORMS.get(policy['type']) assert op is not None, f'Invalid policy type "{policy["type"]}".' op_args = inspect.getfullargspec(op.__init__).args for key, value in hparams.items(): if key in op_args and key not in policy: policy[key] = value return policy @TRANSFORMS.register_module() class AutoAugment(RandomChoice): """Auto augmentation. This data augmentation is proposed in `AutoAugment: Learning Augmentation Policies from Data `_. Args: policies (str | list[list[dict]]): The policies of auto augmentation. If string, use preset policies collection like "imagenet". If list, Each item is a sub policies, composed by several augmentation policy dicts. When AutoAugment is called, a random sub policies in ``policies`` will be selected to augment images. hparams (dict): Configs of hyperparameters. Hyperparameters will be used in policies that require these arguments if these arguments are not set in policy dicts. Defaults to ``dict(pad_val=128)``. """ def __init__(self, policies: Union[str, List[List[dict]]], hparams: dict = dict(pad_val=128)): if isinstance(policies, str): assert policies in AUTOAUG_POLICIES, 'Invalid policies, ' \ f'please choose from {list(AUTOAUG_POLICIES.keys())}.' policies = AUTOAUG_POLICIES[policies] self.hparams = hparams self.policies = [[merge_hparams(t, hparams) for t in sub] for sub in policies] super().__init__(transforms=self.policies) def __repr__(self) -> str: policies_str = '' for sub in self.policies: policies_str += '\n ' + ', \t'.join([t['type'] for t in sub]) repr_str = self.__class__.__name__ repr_str += f'(policies:{policies_str}\n)' return repr_str @TRANSFORMS.register_module() class RandAugment(BaseTransform): r"""Random augmentation. This data augmentation is proposed in `RandAugment: Practical automated data augmentation with a reduced search space `_. Args: policies (str | list[dict]): The policies of random augmentation. If string, use preset policies collection like "timm_increasing". If list, each item is one specific augmentation policy dict. The policy dict shall should have these keys: - ``type`` (str), The type of augmentation. - ``magnitude_range`` (Sequence[number], optional): For those augmentation have magnitude, you need to specify the magnitude level mapping range. For example, assume ``total_level`` is 10, ``magnitude_level=3`` specify magnitude is 3 if ``magnitude_range=(0, 10)`` while specify magnitude is 7 if ``magnitude_range=(10, 0)``. - other keyword arguments of the augmentation. num_policies (int): Number of policies to select from policies each time. magnitude_level (int | float): Magnitude level for all the augmentation selected. magnitude_std (Number | str): Deviation of magnitude noise applied. - If positive number, the magnitude obeys normal distribution :math:`\mathcal{N}(magnitude_level, magnitude_std)`. - If 0 or negative number, magnitude remains unchanged. - If str "inf", the magnitude obeys uniform distribution :math:`Uniform(min, magnitude)`. total_level (int | float): Total level for the magnitude. Defaults to 10. hparams (dict): Configs of hyperparameters. Hyperparameters will be used in policies that require these arguments if these arguments are not set in policy dicts. Defaults to ``dict(pad_val=128)``. Examples: To use "timm-increasing" policies collection, select two policies every time, and magnitude_level of every policy is 6 (total is 10 by default) >>> import numpy as np >>> from mmcls.datasets import RandAugment >>> transform = RandAugment( ... policies='timm_increasing', ... num_policies=2, ... magnitude_level=6, ... ) >>> data = {'img': np.random.randint(0, 256, (224, 224, 3))} >>> results = transform(data) >>> print(results['img'].shape) (224, 224, 3) If you want the ``magnitude_level`` randomly changes every time, you can use ``magnitude_std`` to specify the random distribution. For example, a normal distribution :math:`\mathcal{N}(6, 0.5)`. >>> transform = RandAugment( ... policies='timm_increasing', ... num_policies=2, ... magnitude_level=6, ... magnitude_std=0.5, ... ) You can also use your own policies: >>> policies = [ ... dict(type='AutoContrast'), ... dict(type='Rotate', magnitude_range=(0, 30)), ... dict(type='ColorTransform', magnitude_range=(0, 0.9)), ... ] >>> transform = RandAugment( ... policies=policies, ... num_policies=2, ... magnitude_level=6 ... ) Note: ``magnitude_std`` will introduce some randomness to policy, modified by https://github.com/rwightman/pytorch-image-models. When magnitude_std=0, we calculate the magnitude as follows: .. math:: \text{magnitude} = \frac{\text{magnitude_level}} {\text{totallevel}} \times (\text{val2} - \text{val1}) + \text{val1} """ def __init__(self, policies: Union[str, List[dict]], num_policies: int, magnitude_level: int, magnitude_std: Union[Number, str] = 0., total_level: int = 10, hparams: dict = dict(pad_val=128)): if isinstance(policies, str): assert policies in RANDAUG_POLICIES, 'Invalid policies, ' \ f'please choose from {list(RANDAUG_POLICIES.keys())}.' policies = RANDAUG_POLICIES[policies] assert is_list_of(policies, dict), 'policies must be a list of dict.' assert isinstance(magnitude_std, (Number, str)), \ '`magnitude_std` must be of number or str type, ' \ f'got {type(magnitude_std)} instead.' if isinstance(magnitude_std, str): assert magnitude_std == 'inf', \ '`magnitude_std` must be of number or "inf", ' \ f'got "{magnitude_std}" instead.' assert num_policies > 0, 'num_policies must be greater than 0.' assert magnitude_level >= 0, 'magnitude_level must be no less than 0.' assert total_level > 0, 'total_level must be greater than 0.' self.num_policies = num_policies self.magnitude_level = magnitude_level self.magnitude_std = magnitude_std self.total_level = total_level self.hparams = hparams self.policies = [] self.transforms = [] randaug_cfg = dict( magnitude_level=magnitude_level, total_level=total_level, magnitude_std=magnitude_std) for policy in policies: self._check_policy(policy) policy = merge_hparams(policy, hparams) policy.pop('magnitude_key', None) # For backward compatibility if 'magnitude_range' in policy: policy.update(randaug_cfg) self.policies.append(policy) self.transforms.append(TRANSFORMS.build(policy)) def __iter__(self): """Iterate all transforms.""" return iter(self.transforms) def _check_policy(self, policy): """Check whether the sub-policy dict is available.""" assert isinstance(policy, dict) and 'type' in policy, \ 'Each policy must be a dict with key "type".' type_name = policy['type'] if 'magnitude_range' in policy: magnitude_range = policy['magnitude_range'] assert is_seq_of(magnitude_range, Number), \ f'`magnitude_range` of RandAugment policy {type_name} ' \ 'should be a sequence with two numbers.' @cache_randomness def random_policy_indices(self) -> np.ndarray: """Return the random chosen transform indices.""" indices = np.arange(len(self.policies)) return np.random.choice(indices, size=self.num_policies).tolist() def transform(self, results: dict) -> Optional[dict]: """Randomly choose a sub-policy to apply.""" chosen_policies = [ self.transforms[i] for i in self.random_policy_indices() ] sub_pipeline = Compose(chosen_policies) return sub_pipeline(results) def __repr__(self) -> str: policies_str = '' for policy in self.policies: policies_str += '\n ' + f'{policy["type"]}' if 'magnitude_range' in policy: val1, val2 = policy['magnitude_range'] policies_str += f' ({val1}, {val2})' repr_str = self.__class__.__name__ repr_str += f'(num_policies={self.num_policies}, ' repr_str += f'magnitude_level={self.magnitude_level}, ' repr_str += f'total_level={self.total_level}, ' repr_str += f'policies:{policies_str}\n)' return repr_str class BaseAugTransform(BaseTransform): r"""The base class of augmentation transform for RandAugment. This class provides several common attributions and methods to support the magnitude level mapping and magnitude level randomness in :class:`RandAugment`. Args: magnitude_level (int | float): Magnitude level. magnitude_range (Sequence[number], optional): For augmentation have magnitude argument, maybe "magnitude", "angle" or other, you can specify the magnitude level mapping range to generate the magnitude argument. For example, assume ``total_level`` is 10, ``magnitude_level=3`` specify magnitude is 3 if ``magnitude_range=(0, 10)`` while specify magnitude is 7 if ``magnitude_range=(10, 0)``. Defaults to None. magnitude_std (Number | str): Deviation of magnitude noise applied. - If positive number, the magnitude obeys normal distribution :math:`\mathcal{N}(magnitude, magnitude_std)`. - If 0 or negative number, magnitude remains unchanged. - If str "inf", the magnitude obeys uniform distribution :math:`Uniform(min, magnitude)`. Defaults to 0. total_level (int | float): Total level for the magnitude. Defaults to 10. prob (float): The probability for performing transformation therefore should be in range [0, 1]. Defaults to 0.5. random_negative_prob (float): The probability that turns the magnitude negative, which should be in range [0,1]. Defaults to 0. """ def __init__(self, magnitude_level: int = 10, magnitude_range: Tuple[float, float] = None, magnitude_std: Union[str, float] = 0., total_level: int = 10, prob: float = 0.5, random_negative_prob: float = 0.5): self.magnitude_level = magnitude_level self.magnitude_range = magnitude_range self.magnitude_std = magnitude_std self.total_level = total_level self.prob = prob self.random_negative_prob = random_negative_prob @cache_randomness def random_disable(self): """Randomly disable the transform.""" return np.random.rand() > self.prob @cache_randomness def random_magnitude(self): """Randomly generate magnitude.""" magnitude = self.magnitude_level # if magnitude_std is positive number or 'inf', move # magnitude_value randomly. if self.magnitude_std == 'inf': magnitude = np.random.uniform(0, magnitude) elif self.magnitude_std > 0: magnitude = np.random.normal(magnitude, self.magnitude_std) magnitude = np.clip(magnitude, 0, self.total_level) val1, val2 = self.magnitude_range magnitude = (magnitude / self.total_level) * (val2 - val1) + val1 return magnitude @cache_randomness def random_negative(self, value): """Randomly negative the value.""" if np.random.rand() < self.random_negative_prob: return -value else: return value def extra_repr(self): """Extra repr string when auto-generating magnitude is enabled.""" if self.magnitude_range is not None: repr_str = f', magnitude_level={self.magnitude_level}, ' repr_str += f'magnitude_range={self.magnitude_range}, ' repr_str += f'magnitude_std={self.magnitude_std}, ' repr_str += f'total_level={self.total_level}, ' return repr_str else: return '' @TRANSFORMS.register_module() class Shear(BaseAugTransform): """Shear images. Args: magnitude (int | float | None): The magnitude used for shear. If None, generate from ``magnitude_range``, see :class:`BaseAugTransform`. Defaults to None. pad_val (int, Sequence[int]): Pixel pad_val value for constant fill. If a sequence of length 3, it is used to pad_val R, G, B channels respectively. Defaults to 128. prob (float): The probability for performing shear therefore should be in range [0, 1]. Defaults to 0.5. direction (str): The shearing direction. Options are 'horizontal' and 'vertical'. Defaults to 'horizontal'. random_negative_prob (float): The probability that turns the magnitude negative, which should be in range [0,1]. Defaults to 0.5. interpolation (str): Interpolation method. Options are 'nearest', 'bilinear', 'bicubic', 'area', 'lanczos'. Defaults to 'bicubic'. **kwargs: Other keyword arguments of :class:`BaseAugTransform`. """ def __init__(self, magnitude: Union[int, float, None] = None, pad_val: Union[int, Sequence[int]] = 128, prob: float = 0.5, direction: str = 'horizontal', random_negative_prob: float = 0.5, interpolation: str = 'bicubic', **kwargs): super().__init__( prob=prob, random_negative_prob=random_negative_prob, **kwargs) assert (magnitude is None) ^ (self.magnitude_range is None), \ 'Please specify only one of `magnitude` and `magnitude_range`.' self.magnitude = magnitude if isinstance(pad_val, Sequence): self.pad_val = tuple(pad_val) else: self.pad_val = pad_val assert direction in ('horizontal', 'vertical'), 'direction must be ' \ f'either "horizontal" or "vertical", got "{direction}" instead.' self.direction = direction self.interpolation = interpolation def transform(self, results): """Apply transform to results.""" if self.random_disable(): return results if self.magnitude is not None: magnitude = self.random_negative(self.magnitude) else: magnitude = self.random_negative(self.random_magnitude()) img = results['img'] img_sheared = mmcv.imshear( img, magnitude, direction=self.direction, border_value=self.pad_val, interpolation=self.interpolation) results['img'] = img_sheared.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(magnitude={self.magnitude}, ' repr_str += f'pad_val={self.pad_val}, ' repr_str += f'prob={self.prob}, ' repr_str += f'direction={self.direction}, ' repr_str += f'random_negative_prob={self.random_negative_prob}, ' repr_str += f'interpolation={self.interpolation}{self.extra_repr()})' return repr_str @TRANSFORMS.register_module() class Translate(BaseAugTransform): """Translate images. Args: magnitude (int | float | None): The magnitude used for translate. Note that the offset is calculated by magnitude * size in the corresponding direction. With a magnitude of 1, the whole image will be moved out of the range. If None, generate from ``magnitude_range``, see :class:`BaseAugTransform`. pad_val (int, Sequence[int]): Pixel pad_val value for constant fill. If a sequence of length 3, it is used to pad_val R, G, B channels respectively. Defaults to 128. prob (float): The probability for performing translate therefore should be in range [0, 1]. Defaults to 0.5. direction (str): The translating direction. Options are 'horizontal' and 'vertical'. Defaults to 'horizontal'. random_negative_prob (float): The probability that turns the magnitude negative, which should be in range [0,1]. Defaults to 0.5. interpolation (str): Interpolation method. Options are 'nearest', 'bilinear', 'bicubic', 'area', 'lanczos'. Defaults to 'nearest'. **kwargs: Other keyword arguments of :class:`BaseAugTransform`. """ def __init__(self, magnitude: Union[int, float, None] = None, pad_val: Union[int, Sequence[int]] = 128, prob: float = 0.5, direction: str = 'horizontal', random_negative_prob: float = 0.5, interpolation: str = 'nearest', **kwargs): super().__init__( prob=prob, random_negative_prob=random_negative_prob, **kwargs) assert (magnitude is None) ^ (self.magnitude_range is None), \ 'Please specify only one of `magnitude` and `magnitude_range`.' self.magnitude = magnitude if isinstance(pad_val, Sequence): self.pad_val = tuple(pad_val) else: self.pad_val = pad_val assert direction in ('horizontal', 'vertical'), 'direction must be ' \ f'either "horizontal" or "vertical", got "{direction}" instead.' self.direction = direction self.interpolation = interpolation def transform(self, results): """Apply transform to results.""" if self.random_disable(): return results if self.magnitude is not None: magnitude = self.random_negative(self.magnitude) else: magnitude = self.random_negative(self.random_magnitude()) img = results['img'] height, width = img.shape[:2] if self.direction == 'horizontal': offset = magnitude * width else: offset = magnitude * height img_translated = mmcv.imtranslate( img, offset, direction=self.direction, border_value=self.pad_val, interpolation=self.interpolation) results['img'] = img_translated.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(magnitude={self.magnitude}, ' repr_str += f'pad_val={self.pad_val}, ' repr_str += f'prob={self.prob}, ' repr_str += f'direction={self.direction}, ' repr_str += f'random_negative_prob={self.random_negative_prob}, ' repr_str += f'interpolation={self.interpolation}{self.extra_repr()})' return repr_str @TRANSFORMS.register_module() class Rotate(BaseAugTransform): """Rotate images. Args: angle (float, optional): The angle used for rotate. Positive values stand for clockwise rotation. If None, generate from ``magnitude_range``, see :class:`BaseAugTransform`. Defaults to None. center (tuple[float], optional): Center point (w, h) of the rotation in the source image. If None, the center of the image will be used. Defaults to None. scale (float): Isotropic scale factor. Defaults to 1.0. pad_val (int, Sequence[int]): Pixel pad_val value for constant fill. If a sequence of length 3, it is used to pad_val R, G, B channels respectively. Defaults to 128. prob (float): The probability for performing rotate therefore should be in range [0, 1]. Defaults to 0.5. random_negative_prob (float): The probability that turns the angle negative, which should be in range [0,1]. Defaults to 0.5. interpolation (str): Interpolation method. Options are 'nearest', 'bilinear', 'bicubic', 'area', 'lanczos'. Defaults to 'nearest'. **kwargs: Other keyword arguments of :class:`BaseAugTransform`. """ def __init__(self, angle: Optional[float] = None, center: Optional[Tuple[float]] = None, scale: float = 1.0, pad_val: Union[int, Sequence[int]] = 128, prob: float = 0.5, random_negative_prob: float = 0.5, interpolation: str = 'nearest', **kwargs): super().__init__( prob=prob, random_negative_prob=random_negative_prob, **kwargs) assert (angle is None) ^ (self.magnitude_range is None), \ 'Please specify only one of `angle` and `magnitude_range`.' self.angle = angle self.center = center self.scale = scale if isinstance(pad_val, Sequence): self.pad_val = tuple(pad_val) else: self.pad_val = pad_val self.interpolation = interpolation def transform(self, results): """Apply transform to results.""" if self.random_disable(): return results if self.angle is not None: angle = self.random_negative(self.angle) else: angle = self.random_negative(self.random_magnitude()) img = results['img'] img_rotated = mmcv.imrotate( img, angle, center=self.center, scale=self.scale, border_value=self.pad_val, interpolation=self.interpolation) results['img'] = img_rotated.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(angle={self.angle}, ' repr_str += f'center={self.center}, ' repr_str += f'scale={self.scale}, ' repr_str += f'pad_val={self.pad_val}, ' repr_str += f'prob={self.prob}, ' repr_str += f'random_negative_prob={self.random_negative_prob}, ' repr_str += f'interpolation={self.interpolation}{self.extra_repr()})' return repr_str @TRANSFORMS.register_module() class AutoContrast(BaseAugTransform): """Auto adjust image contrast. Args: prob (float): The probability for performing auto contrast therefore should be in range [0, 1]. Defaults to 0.5. **kwargs: Other keyword arguments of :class:`BaseAugTransform`. """ def __init__(self, prob: float = 0.5, **kwargs): super().__init__(prob=prob, **kwargs) def transform(self, results): """Apply transform to results.""" if self.random_disable(): return results img = results['img'] img_contrasted = mmcv.auto_contrast(img) results['img'] = img_contrasted.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(prob={self.prob})' return repr_str @TRANSFORMS.register_module() class Invert(BaseAugTransform): """Invert images. Args: prob (float): The probability for performing invert therefore should be in range [0, 1]. Defaults to 0.5. **kwargs: Other keyword arguments of :class:`BaseAugTransform`. """ def __init__(self, prob: float = 0.5, **kwargs): super().__init__(prob=prob, **kwargs) def transform(self, results): """Apply transform to results.""" if self.random_disable(): return results img = results['img'] img_inverted = mmcv.iminvert(img) results['img'] = img_inverted.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(prob={self.prob})' return repr_str @TRANSFORMS.register_module() class Equalize(BaseAugTransform): """Equalize the image histogram. Args: prob (float): The probability for performing equalize therefore should be in range [0, 1]. Defaults to 0.5. **kwargs: Other keyword arguments of :class:`BaseAugTransform`. """ def __init__(self, prob: float = 0.5, **kwargs): super().__init__(prob=prob, **kwargs) def transform(self, results): """Apply transform to results.""" if self.random_disable(): return results img = results['img'] img_equalized = mmcv.imequalize(img) results['img'] = img_equalized.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(prob={self.prob})' return repr_str @TRANSFORMS.register_module() class Solarize(BaseAugTransform): """Solarize images (invert all pixel values above a threshold). Args: thr (int | float | None): The threshold above which the pixels value will be inverted. If None, generate from ``magnitude_range``, see :class:`BaseAugTransform`. Defaults to None. prob (float): The probability for solarizing therefore should be in range [0, 1]. Defaults to 0.5. **kwargs: Other keyword arguments of :class:`BaseAugTransform`. """ def __init__(self, thr: Union[int, float, None] = None, prob: float = 0.5, **kwargs): super().__init__(prob=prob, random_negative_prob=0., **kwargs) assert (thr is None) ^ (self.magnitude_range is None), \ 'Please specify only one of `thr` and `magnitude_range`.' self.thr = thr def transform(self, results): """Apply transform to results.""" if self.random_disable(): return results if self.thr is not None: thr = self.thr else: thr = self.random_magnitude() img = results['img'] img_solarized = mmcv.solarize(img, thr=thr) results['img'] = img_solarized.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(thr={self.thr}, ' repr_str += f'prob={self.prob}{self.extra_repr()}))' return repr_str @TRANSFORMS.register_module() class SolarizeAdd(BaseAugTransform): """SolarizeAdd images (add a certain value to pixels below a threshold). Args: magnitude (int | float | None): The value to be added to pixels below the thr. If None, generate from ``magnitude_range``, see :class:`BaseAugTransform`. Defaults to None. thr (int | float): The threshold below which the pixels value will be adjusted. prob (float): The probability for solarizing therefore should be in range [0, 1]. Defaults to 0.5. **kwargs: Other keyword arguments of :class:`BaseAugTransform`. """ def __init__(self, magnitude: Union[int, float, None] = None, thr: Union[int, float] = 128, prob: float = 0.5, **kwargs): super().__init__(prob=prob, random_negative_prob=0., **kwargs) assert (magnitude is None) ^ (self.magnitude_range is None), \ 'Please specify only one of `magnitude` and `magnitude_range`.' self.magnitude = magnitude assert isinstance(thr, (int, float)), 'The thr type must '\ f'be int or float, but got {type(thr)} instead.' self.thr = thr def transform(self, results): """Apply transform to results.""" if self.random_disable(): return results if self.magnitude is not None: magnitude = self.magnitude else: magnitude = self.random_magnitude() img = results['img'] img_solarized = np.where(img < self.thr, np.minimum(img + magnitude, 255), img) results['img'] = img_solarized.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(magnitude={self.magnitude}, ' repr_str += f'thr={self.thr}, ' repr_str += f'prob={self.prob}{self.extra_repr()})' return repr_str @TRANSFORMS.register_module() class Posterize(BaseAugTransform): """Posterize images (reduce the number of bits for each color channel). Args: bits (int, optional): Number of bits for each pixel in the output img, which should be less or equal to 8. If None, generate from ``magnitude_range``, see :class:`BaseAugTransform`. Defaults to None. prob (float): The probability for posterizing therefore should be in range [0, 1]. Defaults to 0.5. **kwargs: Other keyword arguments of :class:`BaseAugTransform`. """ def __init__(self, bits: Optional[int] = None, prob: float = 0.5, **kwargs): super().__init__(prob=prob, random_negative_prob=0., **kwargs) assert (bits is None) ^ (self.magnitude_range is None), \ 'Please specify only one of `bits` and `magnitude_range`.' if bits is not None: assert bits <= 8, \ f'The bits must be less than 8, got {bits} instead.' self.bits = bits def transform(self, results): """Apply transform to results.""" if self.random_disable(): return results if self.bits is not None: bits = self.bits else: bits = self.random_magnitude() # To align timm version, we need to round up to integer here. bits = ceil(bits) img = results['img'] img_posterized = mmcv.posterize(img, bits=bits) results['img'] = img_posterized.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(bits={self.bits}, ' repr_str += f'prob={self.prob}{self.extra_repr()})' return repr_str @TRANSFORMS.register_module() class Contrast(BaseAugTransform): """Adjust images contrast. Args: magnitude (int | float | None): The magnitude used for adjusting contrast. A positive magnitude would enhance the contrast and a negative magnitude would make the image grayer. A magnitude=0 gives the origin img. If None, generate from ``magnitude_range``, see :class:`BaseAugTransform`. Defaults to None. prob (float): The probability for performing contrast adjusting therefore should be in range [0, 1]. Defaults to 0.5. random_negative_prob (float): The probability that turns the magnitude negative, which should be in range [0,1]. Defaults to 0.5. """ def __init__(self, magnitude: Union[int, float, None] = None, prob: float = 0.5, random_negative_prob: float = 0.5, **kwargs): super().__init__( prob=prob, random_negative_prob=random_negative_prob, **kwargs) assert (magnitude is None) ^ (self.magnitude_range is None), \ 'Please specify only one of `magnitude` and `magnitude_range`.' self.magnitude = magnitude def transform(self, results): """Apply transform to results.""" if self.random_disable(): return results if self.magnitude is not None: magnitude = self.random_negative(self.magnitude) else: magnitude = self.random_negative(self.random_magnitude()) img = results['img'] img_contrasted = mmcv.adjust_contrast(img, factor=1 + magnitude) results['img'] = img_contrasted.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(magnitude={self.magnitude}, ' repr_str += f'prob={self.prob}, ' repr_str += f'random_negative_prob={self.random_negative_prob}' repr_str += f'{self.extra_repr()})' return repr_str @TRANSFORMS.register_module() class ColorTransform(BaseAugTransform): """Adjust images color balance. Args: magnitude (int | float | None): The magnitude used for color transform. A positive magnitude would enhance the color and a negative magnitude would make the image grayer. A magnitude=0 gives the origin img. If None, generate from ``magnitude_range``, see :class:`BaseAugTransform`. Defaults to None. prob (float): The probability for performing ColorTransform therefore should be in range [0, 1]. Defaults to 0.5. random_negative_prob (float): The probability that turns the magnitude negative, which should be in range [0,1]. Defaults to 0.5. **kwargs: Other keyword arguments of :class:`BaseAugTransform`. """ def __init__(self, magnitude: Union[int, float, None] = None, prob: float = 0.5, random_negative_prob: float = 0.5, **kwargs): super().__init__( prob=prob, random_negative_prob=random_negative_prob, **kwargs) assert (magnitude is None) ^ (self.magnitude_range is None), \ 'Please specify only one of `magnitude` and `magnitude_range`.' self.magnitude = magnitude def transform(self, results): """Apply transform to results.""" if self.random_disable(): return results if self.magnitude is not None: magnitude = self.random_negative(self.magnitude) else: magnitude = self.random_negative(self.random_magnitude()) img = results['img'] img_color_adjusted = mmcv.adjust_color(img, alpha=1 + magnitude) results['img'] = img_color_adjusted.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(magnitude={self.magnitude}, ' repr_str += f'prob={self.prob}, ' repr_str += f'random_negative_prob={self.random_negative_prob}' repr_str += f'{self.extra_repr()})' return repr_str @TRANSFORMS.register_module() class Brightness(BaseAugTransform): """Adjust images brightness. Args: magnitude (int | float | None): The magnitude used for adjusting brightness. A positive magnitude would enhance the brightness and a negative magnitude would make the image darker. A magnitude=0 gives the origin img. If None, generate from ``magnitude_range``, see :class:`BaseAugTransform`. Defaults to None. prob (float): The probability for performing brightness adjusting therefore should be in range [0, 1]. Defaults to 0.5. random_negative_prob (float): The probability that turns the magnitude negative, which should be in range [0,1]. Defaults to 0.5. **kwargs: Other keyword arguments of :class:`BaseAugTransform`. """ def __init__(self, magnitude: Union[int, float, None] = None, prob: float = 0.5, random_negative_prob: float = 0.5, **kwargs): super().__init__( prob=prob, random_negative_prob=random_negative_prob, **kwargs) assert (magnitude is None) ^ (self.magnitude_range is None), \ 'Please specify only one of `magnitude` and `magnitude_range`.' self.magnitude = magnitude def transform(self, results): """Apply transform to results.""" if self.random_disable(): return results if self.magnitude is not None: magnitude = self.random_negative(self.magnitude) else: magnitude = self.random_negative(self.random_magnitude()) img = results['img'] img_brightened = mmcv.adjust_brightness(img, factor=1 + magnitude) results['img'] = img_brightened.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(magnitude={self.magnitude}, ' repr_str += f'prob={self.prob}, ' repr_str += f'random_negative_prob={self.random_negative_prob}' repr_str += f'{self.extra_repr()})' return repr_str @TRANSFORMS.register_module() class Sharpness(BaseAugTransform): """Adjust images sharpness. Args: magnitude (int | float | None): The magnitude used for adjusting sharpness. A positive magnitude would enhance the sharpness and a negative magnitude would make the image bulr. A magnitude=0 gives the origin img. If None, generate from ``magnitude_range``, see :class:`BaseAugTransform`. Defaults to None. prob (float): The probability for performing sharpness adjusting therefore should be in range [0, 1]. Defaults to 0.5. random_negative_prob (float): The probability that turns the magnitude negative, which should be in range [0,1]. Defaults to 0.5. **kwargs: Other keyword arguments of :class:`BaseAugTransform`. """ def __init__(self, magnitude: Union[int, float, None] = None, prob: float = 0.5, random_negative_prob: float = 0.5, **kwargs): super().__init__( prob=prob, random_negative_prob=random_negative_prob, **kwargs) assert (magnitude is None) ^ (self.magnitude_range is None), \ 'Please specify only one of `magnitude` and `magnitude_range`.' self.magnitude = magnitude def transform(self, results): """Apply transform to results.""" if self.random_disable(): return results if self.magnitude is not None: magnitude = self.random_negative(self.magnitude) else: magnitude = self.random_negative(self.random_magnitude()) img = results['img'] img_sharpened = mmcv.adjust_sharpness(img, factor=1 + magnitude) results['img'] = img_sharpened.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(magnitude={self.magnitude}, ' repr_str += f'prob={self.prob}, ' repr_str += f'random_negative_prob={self.random_negative_prob}' repr_str += f'{self.extra_repr()})' return repr_str @TRANSFORMS.register_module() class Cutout(BaseAugTransform): """Cutout images. Args: shape (int | tuple(int) | None): Expected cutout shape (h, w). If given as a single value, the value will be used for both h and w. If None, generate from ``magnitude_range``, see :class:`BaseAugTransform`. Defaults to None. pad_val (int, Sequence[int]): Pixel pad_val value for constant fill. If it is a sequence, it must have the same length with the image channels. Defaults to 128. prob (float): The probability for performing cutout therefore should be in range [0, 1]. Defaults to 0.5. **kwargs: Other keyword arguments of :class:`BaseAugTransform`. """ def __init__(self, shape: Union[int, Tuple[int], None] = None, pad_val: Union[int, Sequence[int]] = 128, prob: float = 0.5, **kwargs): super().__init__(prob=prob, random_negative_prob=0., **kwargs) assert (shape is None) ^ (self.magnitude_range is None), \ 'Please specify only one of `shape` and `magnitude_range`.' self.shape = shape if isinstance(pad_val, Sequence): self.pad_val = tuple(pad_val) else: self.pad_val = pad_val def transform(self, results): """Apply transform to results.""" if self.random_disable(): return results if self.shape is not None: shape = self.shape else: shape = int(self.random_magnitude()) img = results['img'] img_cutout = mmcv.cutout(img, shape, pad_val=self.pad_val) results['img'] = img_cutout.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(shape={self.shape}, ' repr_str += f'pad_val={self.pad_val}, ' repr_str += f'prob={self.prob}{self.extra_repr()})' return repr_str # yapf: disable # flake8: noqa AUTOAUG_POLICIES = { # Policy for ImageNet, refers to # https://github.com/DeepVoltaire/AutoAugment/blame/master/autoaugment.py 'imagenet': [ [dict(type='Posterize', bits=4, prob=0.4), dict(type='Rotate', angle=30., prob=0.6)], [dict(type='Solarize', thr=256 / 9 * 4, prob=0.6), dict(type='AutoContrast', prob=0.6)], [dict(type='Equalize', prob=0.8), dict(type='Equalize', prob=0.6)], [dict(type='Posterize', bits=5, prob=0.6), dict(type='Posterize', bits=5, prob=0.6)], [dict(type='Equalize', prob=0.4), dict(type='Solarize', thr=256 / 9 * 5, prob=0.2)], [dict(type='Equalize', prob=0.4), dict(type='Rotate', angle=30 / 9 * 8, prob=0.8)], [dict(type='Solarize', thr=256 / 9 * 6, prob=0.6), dict(type='Equalize', prob=0.6)], [dict(type='Posterize', bits=6, prob=0.8), dict(type='Equalize', prob=1.)], [dict(type='Rotate', angle=10., prob=0.2), dict(type='Solarize', thr=256 / 9, prob=0.6)], [dict(type='Equalize', prob=0.6), dict(type='Posterize', bits=5, prob=0.4)], [dict(type='Rotate', angle=30 / 9 * 8, prob=0.8), dict(type='ColorTransform', magnitude=0., prob=0.4)], [dict(type='Rotate', angle=30., prob=0.4), dict(type='Equalize', prob=0.6)], [dict(type='Equalize', prob=0.0), dict(type='Equalize', prob=0.8)], [dict(type='Invert', prob=0.6), dict(type='Equalize', prob=1.)], [dict(type='ColorTransform', magnitude=0.4, prob=0.6), dict(type='Contrast', magnitude=0.8, prob=1.)], [dict(type='Rotate', angle=30 / 9 * 8, prob=0.8), dict(type='ColorTransform', magnitude=0.2, prob=1.)], [dict(type='ColorTransform', magnitude=0.8, prob=0.8), dict(type='Solarize', thr=256 / 9 * 2, prob=0.8)], [dict(type='Sharpness', magnitude=0.7, prob=0.4), dict(type='Invert', prob=0.6)], [dict(type='Shear', magnitude=0.3 / 9 * 5, prob=0.6, direction='horizontal'), dict(type='Equalize', prob=1.)], [dict(type='ColorTransform', magnitude=0., prob=0.4), dict(type='Equalize', prob=0.6)], [dict(type='Equalize', prob=0.4), dict(type='Solarize', thr=256 / 9 * 5, prob=0.2)], [dict(type='Solarize', thr=256 / 9 * 4, prob=0.6), dict(type='AutoContrast', prob=0.6)], [dict(type='Invert', prob=0.6), dict(type='Equalize', prob=1.)], [dict(type='ColorTransform', magnitude=0.4, prob=0.6), dict(type='Contrast', magnitude=0.8, prob=1.)], [dict(type='Equalize', prob=0.8), dict(type='Equalize', prob=0.6)], ], } RANDAUG_POLICIES = { # Refers to `_RAND_INCREASING_TRANSFORMS` in pytorch-image-models 'timm_increasing': [ dict(type='AutoContrast'), dict(type='Equalize'), dict(type='Invert'), dict(type='Rotate', magnitude_range=(0, 30)), dict(type='Posterize', magnitude_range=(4, 0)), dict(type='Solarize', magnitude_range=(256, 0)), dict(type='SolarizeAdd', magnitude_range=(0, 110)), dict(type='ColorTransform', magnitude_range=(0, 0.9)), dict(type='Contrast', magnitude_range=(0, 0.9)), dict(type='Brightness', magnitude_range=(0, 0.9)), dict(type='Sharpness', magnitude_range=(0, 0.9)), dict(type='Shear', magnitude_range=(0, 0.3), direction='horizontal'), dict(type='Shear', magnitude_range=(0, 0.3), direction='vertical'), dict(type='Translate', magnitude_range=(0, 0.45), direction='horizontal'), dict(type='Translate', magnitude_range=(0, 0.45), direction='vertical'), ], }