Collections: - Name: ResNet Metadata: Training Data: ImageNet-1k Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Epochs: 100 Batch Size: 256 Architecture: - ResNet Paper: URL: https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html Title: "Deep Residual Learning for Image Recognition" README: configs/resnet/README.md Code: URL: https://github.com/open-mmlab/mmclassification/blob/v0.15.0/mmcls/models/backbones/resnet.py#L383 Version: v0.15.0 Models: - Name: resnet18_8xb16_cifar10 Metadata: Training Data: CIFAR-10 Epochs: 200 Batch Size: 128 FLOPs: 560000000 Parameters: 11170000 In Collection: ResNet Results: - Dataset: CIFAR-10 Metrics: Top 1 Accuracy: 94.82 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_b16x8_cifar10_20210528-bd6371c8.pth Config: configs/resnet/resnet18_8xb16_cifar10.py - Name: resnet34_8xb16_cifar10 Metadata: Training Data: CIFAR-10 Epochs: 200 Batch Size: 128 FLOPs: 1160000000 Parameters: 21280000 In Collection: ResNet Results: - Dataset: CIFAR-10 Metrics: Top 1 Accuracy: 95.34 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_b16x8_cifar10_20210528-a8aa36a6.pth Config: configs/resnet/resnet34_8xb16_cifar10.py - Name: resnet50_8xb16_cifar10 Metadata: Training Data: CIFAR-10 Epochs: 200 Batch Size: 128 FLOPs: 1310000000 Parameters: 23520000 In Collection: ResNet Results: - Dataset: CIFAR-10 Metrics: Top 1 Accuracy: 95.55 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20210528-f54bfad9.pth Config: configs/resnet/resnet50_8xb16_cifar10.py - Name: resnet101_8xb16_cifar10 Metadata: Training Data: CIFAR-10 Epochs: 200 Batch Size: 128 FLOPs: 2520000000 Parameters: 42510000 In Collection: ResNet Results: - Dataset: CIFAR-10 Metrics: Top 1 Accuracy: 95.58 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_b16x8_cifar10_20210528-2d29e936.pth Config: configs/resnet/resnet101_8xb16_cifar10.py - Name: resnet152_8xb16_cifar10 Metadata: Training Data: CIFAR-10 Epochs: 200 Batch Size: 128 FLOPs: 3740000000 Parameters: 58160000 In Collection: ResNet Results: - Dataset: CIFAR-10 Metrics: Top 1 Accuracy: 95.76 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_b16x8_cifar10_20210528-3e8e9178.pth Config: configs/resnet/resnet152_8xb16_cifar10.py - Name: resnet50_8xb16_cifar100 Metadata: Training Data: CIFAR-100 Epochs: 200 Batch Size: 128 FLOPs: 1310000000 Parameters: 23710000 In Collection: ResNet Results: - Dataset: CIFAR-100 Metrics: Top 1 Accuracy: 79.90 Top 5 Accuracy: 95.19 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar100_20210528-67b58a1b.pth Config: configs/resnet/resnet50_8xb16_cifar100.py - Name: resnet18_8xb32_in1k Metadata: FLOPs: 1820000000 Parameters: 11690000 In Collection: ResNet Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 69.90 Top 5 Accuracy: 89.43 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_8xb32_in1k_20210831-fbbb1da6.pth Config: configs/resnet/resnet18_8xb32_in1k.py - Name: resnet34_8xb32_in1k Metadata: FLOPs: 3680000000 Parameters: 2180000 In Collection: ResNet Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 73.62 Top 5 Accuracy: 91.59 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_8xb32_in1k_20210831-f257d4e6.pth Config: configs/resnet/resnet34_8xb32_in1k.py - Name: resnet50_8xb32_in1k Metadata: FLOPs: 4120000000 Parameters: 25560000 In Collection: ResNet Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 76.55 Top 5 Accuracy: 93.06 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth Config: configs/resnet/resnet50_8xb32_in1k.py - Name: resnet101_8xb32_in1k Metadata: FLOPs: 7850000000 Parameters: 44550000 In Collection: ResNet Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 77.97 Top 5 Accuracy: 94.06 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_8xb32_in1k_20210831-539c63f8.pth Config: configs/resnet/resnet101_8xb32_in1k.py - Name: resnet152_8xb32_in1k Metadata: FLOPs: 11580000000 Parameters: 60190000 In Collection: ResNet Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 78.48 Top 5 Accuracy: 94.13 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_8xb32_in1k_20210901-4d7582fa.pth Config: configs/resnet/resnet152_8xb32_in1k.py - Name: resnetv1d50_8xb32_in1k Metadata: FLOPs: 4360000000 Parameters: 25580000 In Collection: ResNet Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 77.54 Top 5 Accuracy: 93.57 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d50_b32x8_imagenet_20210531-db14775a.pth Config: configs/resnet/resnetv1d50_8xb32_in1k.py - Name: resnetv1d101_8xb32_in1k Metadata: FLOPs: 8090000000 Parameters: 44570000 In Collection: ResNet Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 78.93 Top 5 Accuracy: 94.48 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d101_b32x8_imagenet_20210531-6e13bcd3.pth Config: configs/resnet/resnetv1d101_8xb32_in1k.py - Name: resnetv1d152_8xb32_in1k Metadata: FLOPs: 11820000000 Parameters: 60210000 In Collection: ResNet Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 79.41 Top 5 Accuracy: 94.70 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d152_b32x8_imagenet_20210531-278cf22a.pth Config: configs/resnet/resnetv1d152_8xb32_in1k.py - Name: resnet50_8xb32-fp16_in1k Metadata: FLOPs: 4120000000 Parameters: 25560000 Training Techniques: - SGD with Momentum - Weight Decay - Mixed Precision Training In Collection: ResNet Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 76.30 Top 5 Accuracy: 93.07 Weights: https://download.openmmlab.com/mmclassification/v0/fp16/resnet50_batch256_fp16_imagenet_20210320-b3964210.pth Config: configs/resnet/resnet50_8xb32-fp16_in1k.py - Name: resnet50_8xb256-rsb-a1-600e_in1k Metadata: FLOPs: 4120000000 Parameters: 25560000 Training Techniques: - LAMB - Weight Decay - Cosine Annealing - Mixup - CutMix - RepeatAugSampler - RandAugment Epochs: 600 Batch Size: 2048 In Collection: ResNet Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 80.12 Top 5 Accuracy: 94.78 Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.pth Config: configs/resnet/resnet50_8xb256-rsb-a1-600e_in1k.py - Name: resnet50_8xb256-rsb-a2-300e_in1k Metadata: FLOPs: 4120000000 Parameters: 25560000 Training Techniques: - LAMB - Weight Decay - Cosine Annealing - Mixup - CutMix - RepeatAugSampler - RandAugment Epochs: 300 Batch Size: 2048 In Collection: ResNet Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 79.55 Top 5 Accuracy: 94.37 Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a2-300e_in1k_20211228-0fd8be6e.pth Config: configs/resnet/resnet50_8xb256-rsb-a2-300e_in1k.py - Name: resnet50_8xb256-rsb-a3-100e_in1k Metadata: FLOPs: 4120000000 Parameters: 25560000 Training Techniques: - LAMB - Weight Decay - Cosine Annealing - Mixup - CutMix - RandAugment Batch Size: 2048 In Collection: ResNet Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 78.30 Top 5 Accuracy: 93.80 Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a3-100e_in1k_20211228-3493673c.pth Config: configs/resnet/resnet50_8xb256-rsb-a3-100e_in1k.py - Name: resnetv1c50_8xb32_in1k Metadata: FLOPs: 4360000000 Parameters: 25580000 In Collection: ResNet Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 77.01 Top 5 Accuracy: 93.58 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1c50_8xb32_in1k_20220214-3343eccd.pth Config: configs/resnet/resnetv1c50_8xb32_in1k.py - Name: resnetv1c101_8xb32_in1k Metadata: FLOPs: 8090000000 Parameters: 44570000 In Collection: ResNet Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 78.30 Top 5 Accuracy: 94.27 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1c101_8xb32_in1k_20220214-434fe45f.pth Config: configs/resnet/resnetv1c101_8xb32_in1k.py - Name: resnetv1c152_8xb32_in1k Metadata: FLOPs: 11820000000 Parameters: 60210000 In Collection: ResNet Results: - Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 78.76 Top 5 Accuracy: 94.41 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1c152_8xb32_in1k_20220214-c013291f.pth Config: configs/resnet/resnetv1c152_8xb32_in1k.py - Name: resnet50_8xb8_cub Metadata: FLOPs: 16480000000 Parameters: 23920000 In Collection: ResNet Results: - Dataset: CUB-200-2011 Metrics: Top 1 Accuracy: 88.45 Task: Image Classification Pretrain: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_3rdparty-mill_in21k_20220331-faac000b.pth Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb8_cub_20220307-57840e60.pth Config: configs/resnet/resnet50_8xb8_cub.py