# optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.045, momentum=0.9, weight_decay=0.00004)) # learning policy param_scheduler = dict(type='StepLR', by_epoch=True, step_size=1, gamma=0.98) # train, val, test setting train_cfg = dict(by_epoch=True, max_epochs=300, val_interval=1) val_cfg = dict() test_cfg = dict() # NOTE: `auto_scale_lr` is for automatically scaling LR, # based on the actual training batch size. auto_scale_lr = dict(base_batch_size=256)