# optimizer optim_wrapper = dict( optimizer=dict( type='SGD', lr=0.8, momentum=0.9, weight_decay=0.0001, nesterov=True)) # learning policy param_scheduler = [ # warm up learning rate scheduler dict( type='LinearLR', start_factor=0.25, by_epoch=True, begin=0, # about 2500 iterations for ImageNet-1k end=5, # update by iter convert_to_iter_based=True), # main learning rate scheduler dict( type='CosineAnnealingLR', T_max=95, by_epoch=True, begin=5, end=100, ) ] # train, val, test setting train_cfg = dict(by_epoch=True, max_epochs=100, val_interval=1) val_cfg = dict() test_cfg = dict() # NOTE: `auto_scale_lr` is for automatically scaling LR, # based on the actual training batch size. auto_scale_lr = dict(base_batch_size=2048)