from mmcls.models import build_classifier model = dict( type='ImageClassifier', backbone=dict( type='RepLKNet', arch='31B', out_indices=(3, ), ), neck=dict(type='GlobalAveragePooling'), head=dict( type='LinearClsHead', num_classes=1000, in_channels=1024, loss=dict(type='CrossEntropyLoss', loss_weight=1.0), topk=(1, 5), )) if __name__ == '__main__': # model.pop('type') model = build_classifier(model) model.eval() print('------------------- training-time model -------------') for i in model.state_dict().keys(): print(i)