# dataset settings dataset_type = 'ImageNet' data_preprocessor = dict( num_classes=1000, # RGB format normalization parameters mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255], std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255], # convert image from BGR to RGB to_rgb=True, ) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='RandomResizedCrop', scale=336, backend='pillow', interpolation='bicubic'), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='PackClsInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='ResizeEdge', scale=336, edge='short', backend='pillow', interpolation='bicubic'), dict(type='CenterCrop', crop_size=336), dict(type='PackClsInputs'), ] train_dataloader = dict( batch_size=16, num_workers=5, dataset=dict( type=dataset_type, data_root='data/imagenet', ann_file='meta/train.txt', data_prefix='train', pipeline=train_pipeline), sampler=dict(type='DefaultSampler', shuffle=True), ) val_dataloader = dict( batch_size=16, num_workers=5, dataset=dict( type=dataset_type, data_root='data/imagenet', ann_file='meta/val.txt', data_prefix='val', pipeline=test_pipeline), sampler=dict(type='DefaultSampler', shuffle=False), ) val_evaluator = dict(type='Accuracy', topk=(1, 5)) # If you want standard test, please manually configure the test dataset test_dataloader = val_dataloader test_evaluator = val_evaluator