# Copyright (c) OpenMMLab. All rights reserved. from logging import warning from math import ceil, log from typing import List, Optional, Sequence, Tuple import torch import torch.nn as nn from mmcv.cnn import ConvModule from mmcv.ops import CornerPool, batched_nms from mmengine.config import ConfigDict from mmengine.model import BaseModule, bias_init_with_prob from mmengine.structures import InstanceData from torch import Tensor from mmdet.registry import MODELS from mmdet.utils import (ConfigType, InstanceList, OptConfigType, OptInstanceList, OptMultiConfig) from ..utils import (gather_feat, gaussian_radius, gen_gaussian_target, get_local_maximum, get_topk_from_heatmap, multi_apply, transpose_and_gather_feat) from .base_dense_head import BaseDenseHead class BiCornerPool(BaseModule): """Bidirectional Corner Pooling Module (TopLeft, BottomRight, etc.) Args: in_channels (int): Input channels of module. directions (list[str]): Directions of two CornerPools. out_channels (int): Output channels of module. feat_channels (int): Feature channels of module. norm_cfg (:obj:`ConfigDict` or dict): Dictionary to construct and config norm layer. init_cfg (:obj:`ConfigDict` or dict, optional): the config to control the initialization. """ def __init__(self, in_channels: int, directions: List[int], feat_channels: int = 128, out_channels: int = 128, norm_cfg: ConfigType = dict(type='BN', requires_grad=True), init_cfg: OptMultiConfig = None) -> None: super().__init__(init_cfg) self.direction1_conv = ConvModule( in_channels, feat_channels, 3, padding=1, norm_cfg=norm_cfg) self.direction2_conv = ConvModule( in_channels, feat_channels, 3, padding=1, norm_cfg=norm_cfg) self.aftpool_conv = ConvModule( feat_channels, out_channels, 3, padding=1, norm_cfg=norm_cfg, act_cfg=None) self.conv1 = ConvModule( in_channels, out_channels, 1, norm_cfg=norm_cfg, act_cfg=None) self.conv2 = ConvModule( in_channels, out_channels, 3, padding=1, norm_cfg=norm_cfg) self.direction1_pool = CornerPool(directions[0]) self.direction2_pool = CornerPool(directions[1]) self.relu = nn.ReLU(inplace=True) def forward(self, x: Tensor) -> Tensor: """Forward features from the upstream network. Args: x (tensor): Input feature of BiCornerPool. Returns: conv2 (tensor): Output feature of BiCornerPool. """ direction1_conv = self.direction1_conv(x) direction2_conv = self.direction2_conv(x) direction1_feat = self.direction1_pool(direction1_conv) direction2_feat = self.direction2_pool(direction2_conv) aftpool_conv = self.aftpool_conv(direction1_feat + direction2_feat) conv1 = self.conv1(x) relu = self.relu(aftpool_conv + conv1) conv2 = self.conv2(relu) return conv2 @MODELS.register_module() class CornerHead(BaseDenseHead): """Head of CornerNet: Detecting Objects as Paired Keypoints. Code is modified from the `official github repo `_ . More details can be found in the `paper `_ . Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. num_feat_levels (int): Levels of feature from the previous module. 2 for HourglassNet-104 and 1 for HourglassNet-52. Because HourglassNet-104 outputs the final feature and intermediate supervision feature and HourglassNet-52 only outputs the final feature. Defaults to 2. corner_emb_channels (int): Channel of embedding vector. Defaults to 1. train_cfg (:obj:`ConfigDict` or dict, optional): Training config. Useless in CornerHead, but we keep this variable for SingleStageDetector. test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of CornerHead. loss_heatmap (:obj:`ConfigDict` or dict): Config of corner heatmap loss. Defaults to GaussianFocalLoss. loss_embedding (:obj:`ConfigDict` or dict): Config of corner embedding loss. Defaults to AssociativeEmbeddingLoss. loss_offset (:obj:`ConfigDict` or dict): Config of corner offset loss. Defaults to SmoothL1Loss. init_cfg (:obj:`ConfigDict` or dict, optional): the config to control the initialization. """ def __init__(self, num_classes: int, in_channels: int, num_feat_levels: int = 2, corner_emb_channels: int = 1, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, loss_heatmap: ConfigType = dict( type='GaussianFocalLoss', alpha=2.0, gamma=4.0, loss_weight=1), loss_embedding: ConfigType = dict( type='AssociativeEmbeddingLoss', pull_weight=0.25, push_weight=0.25), loss_offset: ConfigType = dict( type='SmoothL1Loss', beta=1.0, loss_weight=1), init_cfg: OptMultiConfig = None) -> None: assert init_cfg is None, 'To prevent abnormal initialization ' \ 'behavior, init_cfg is not allowed to be set' super().__init__(init_cfg=init_cfg) self.num_classes = num_classes self.in_channels = in_channels self.corner_emb_channels = corner_emb_channels self.with_corner_emb = self.corner_emb_channels > 0 self.corner_offset_channels = 2 self.num_feat_levels = num_feat_levels self.loss_heatmap = MODELS.build( loss_heatmap) if loss_heatmap is not None else None self.loss_embedding = MODELS.build( loss_embedding) if loss_embedding is not None else None self.loss_offset = MODELS.build( loss_offset) if loss_offset is not None else None self.train_cfg = train_cfg self.test_cfg = test_cfg self._init_layers() def _make_layers(self, out_channels: int, in_channels: int = 256, feat_channels: int = 256) -> nn.Sequential: """Initialize conv sequential for CornerHead.""" return nn.Sequential( ConvModule(in_channels, feat_channels, 3, padding=1), ConvModule( feat_channels, out_channels, 1, norm_cfg=None, act_cfg=None)) def _init_corner_kpt_layers(self) -> None: """Initialize corner keypoint layers. Including corner heatmap branch and corner offset branch. Each branch has two parts: prefix `tl_` for top-left and `br_` for bottom-right. """ self.tl_pool, self.br_pool = nn.ModuleList(), nn.ModuleList() self.tl_heat, self.br_heat = nn.ModuleList(), nn.ModuleList() self.tl_off, self.br_off = nn.ModuleList(), nn.ModuleList() for _ in range(self.num_feat_levels): self.tl_pool.append( BiCornerPool( self.in_channels, ['top', 'left'], out_channels=self.in_channels)) self.br_pool.append( BiCornerPool( self.in_channels, ['bottom', 'right'], out_channels=self.in_channels)) self.tl_heat.append( self._make_layers( out_channels=self.num_classes, in_channels=self.in_channels)) self.br_heat.append( self._make_layers( out_channels=self.num_classes, in_channels=self.in_channels)) self.tl_off.append( self._make_layers( out_channels=self.corner_offset_channels, in_channels=self.in_channels)) self.br_off.append( self._make_layers( out_channels=self.corner_offset_channels, in_channels=self.in_channels)) def _init_corner_emb_layers(self) -> None: """Initialize corner embedding layers. Only include corner embedding branch with two parts: prefix `tl_` for top-left and `br_` for bottom-right. """ self.tl_emb, self.br_emb = nn.ModuleList(), nn.ModuleList() for _ in range(self.num_feat_levels): self.tl_emb.append( self._make_layers( out_channels=self.corner_emb_channels, in_channels=self.in_channels)) self.br_emb.append( self._make_layers( out_channels=self.corner_emb_channels, in_channels=self.in_channels)) def _init_layers(self) -> None: """Initialize layers for CornerHead. Including two parts: corner keypoint layers and corner embedding layers """ self._init_corner_kpt_layers() if self.with_corner_emb: self._init_corner_emb_layers() def init_weights(self) -> None: super().init_weights() bias_init = bias_init_with_prob(0.1) for i in range(self.num_feat_levels): # The initialization of parameters are different between # nn.Conv2d and ConvModule. Our experiments show that # using the original initialization of nn.Conv2d increases # the final mAP by about 0.2% self.tl_heat[i][-1].conv.reset_parameters() self.tl_heat[i][-1].conv.bias.data.fill_(bias_init) self.br_heat[i][-1].conv.reset_parameters() self.br_heat[i][-1].conv.bias.data.fill_(bias_init) self.tl_off[i][-1].conv.reset_parameters() self.br_off[i][-1].conv.reset_parameters() if self.with_corner_emb: self.tl_emb[i][-1].conv.reset_parameters() self.br_emb[i][-1].conv.reset_parameters() def forward(self, feats: Tuple[Tensor]) -> tuple: """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: Usually a tuple of corner heatmaps, offset heatmaps and embedding heatmaps. - tl_heats (list[Tensor]): Top-left corner heatmaps for all levels, each is a 4D-tensor, the channels number is num_classes. - br_heats (list[Tensor]): Bottom-right corner heatmaps for all levels, each is a 4D-tensor, the channels number is num_classes. - tl_embs (list[Tensor] | list[None]): Top-left embedding heatmaps for all levels, each is a 4D-tensor or None. If not None, the channels number is corner_emb_channels. - br_embs (list[Tensor] | list[None]): Bottom-right embedding heatmaps for all levels, each is a 4D-tensor or None. If not None, the channels number is corner_emb_channels. - tl_offs (list[Tensor]): Top-left offset heatmaps for all levels, each is a 4D-tensor. The channels number is corner_offset_channels. - br_offs (list[Tensor]): Bottom-right offset heatmaps for all levels, each is a 4D-tensor. The channels number is corner_offset_channels. """ lvl_ind = list(range(self.num_feat_levels)) return multi_apply(self.forward_single, feats, lvl_ind) def forward_single(self, x: Tensor, lvl_ind: int, return_pool: bool = False) -> List[Tensor]: """Forward feature of a single level. Args: x (Tensor): Feature of a single level. lvl_ind (int): Level index of current feature. return_pool (bool): Return corner pool feature or not. Defaults to False. Returns: tuple[Tensor]: A tuple of CornerHead's output for current feature level. Containing the following Tensors: - tl_heat (Tensor): Predicted top-left corner heatmap. - br_heat (Tensor): Predicted bottom-right corner heatmap. - tl_emb (Tensor | None): Predicted top-left embedding heatmap. None for `self.with_corner_emb == False`. - br_emb (Tensor | None): Predicted bottom-right embedding heatmap. None for `self.with_corner_emb == False`. - tl_off (Tensor): Predicted top-left offset heatmap. - br_off (Tensor): Predicted bottom-right offset heatmap. - tl_pool (Tensor): Top-left corner pool feature. Not must have. - br_pool (Tensor): Bottom-right corner pool feature. Not must have. """ tl_pool = self.tl_pool[lvl_ind](x) tl_heat = self.tl_heat[lvl_ind](tl_pool) br_pool = self.br_pool[lvl_ind](x) br_heat = self.br_heat[lvl_ind](br_pool) tl_emb, br_emb = None, None if self.with_corner_emb: tl_emb = self.tl_emb[lvl_ind](tl_pool) br_emb = self.br_emb[lvl_ind](br_pool) tl_off = self.tl_off[lvl_ind](tl_pool) br_off = self.br_off[lvl_ind](br_pool) result_list = [tl_heat, br_heat, tl_emb, br_emb, tl_off, br_off] if return_pool: result_list.append(tl_pool) result_list.append(br_pool) return result_list def get_targets(self, gt_bboxes: List[Tensor], gt_labels: List[Tensor], feat_shape: Sequence[int], img_shape: Sequence[int], with_corner_emb: bool = False, with_guiding_shift: bool = False, with_centripetal_shift: bool = False) -> dict: """Generate corner targets. Including corner heatmap, corner offset. Optional: corner embedding, corner guiding shift, centripetal shift. For CornerNet, we generate corner heatmap, corner offset and corner embedding from this function. For CentripetalNet, we generate corner heatmap, corner offset, guiding shift and centripetal shift from this function. Args: gt_bboxes (list[Tensor]): Ground truth bboxes of each image, each has shape (num_gt, 4). gt_labels (list[Tensor]): Ground truth labels of each box, each has shape (num_gt, ). feat_shape (Sequence[int]): Shape of output feature, [batch, channel, height, width]. img_shape (Sequence[int]): Shape of input image, [height, width, channel]. with_corner_emb (bool): Generate corner embedding target or not. Defaults to False. with_guiding_shift (bool): Generate guiding shift target or not. Defaults to False. with_centripetal_shift (bool): Generate centripetal shift target or not. Defaults to False. Returns: dict: Ground truth of corner heatmap, corner offset, corner embedding, guiding shift and centripetal shift. Containing the following keys: - topleft_heatmap (Tensor): Ground truth top-left corner heatmap. - bottomright_heatmap (Tensor): Ground truth bottom-right corner heatmap. - topleft_offset (Tensor): Ground truth top-left corner offset. - bottomright_offset (Tensor): Ground truth bottom-right corner offset. - corner_embedding (list[list[list[int]]]): Ground truth corner embedding. Not must have. - topleft_guiding_shift (Tensor): Ground truth top-left corner guiding shift. Not must have. - bottomright_guiding_shift (Tensor): Ground truth bottom-right corner guiding shift. Not must have. - topleft_centripetal_shift (Tensor): Ground truth top-left corner centripetal shift. Not must have. - bottomright_centripetal_shift (Tensor): Ground truth bottom-right corner centripetal shift. Not must have. """ batch_size, _, height, width = feat_shape img_h, img_w = img_shape[:2] width_ratio = float(width / img_w) height_ratio = float(height / img_h) gt_tl_heatmap = gt_bboxes[-1].new_zeros( [batch_size, self.num_classes, height, width]) gt_br_heatmap = gt_bboxes[-1].new_zeros( [batch_size, self.num_classes, height, width]) gt_tl_offset = gt_bboxes[-1].new_zeros([batch_size, 2, height, width]) gt_br_offset = gt_bboxes[-1].new_zeros([batch_size, 2, height, width]) if with_corner_emb: match = [] # Guiding shift is a kind of offset, from center to corner if with_guiding_shift: gt_tl_guiding_shift = gt_bboxes[-1].new_zeros( [batch_size, 2, height, width]) gt_br_guiding_shift = gt_bboxes[-1].new_zeros( [batch_size, 2, height, width]) # Centripetal shift is also a kind of offset, from center to corner # and normalized by log. if with_centripetal_shift: gt_tl_centripetal_shift = gt_bboxes[-1].new_zeros( [batch_size, 2, height, width]) gt_br_centripetal_shift = gt_bboxes[-1].new_zeros( [batch_size, 2, height, width]) for batch_id in range(batch_size): # Ground truth of corner embedding per image is a list of coord set corner_match = [] for box_id in range(len(gt_labels[batch_id])): left, top, right, bottom = gt_bboxes[batch_id][box_id] center_x = (left + right) / 2.0 center_y = (top + bottom) / 2.0 label = gt_labels[batch_id][box_id] # Use coords in the feature level to generate ground truth scale_left = left * width_ratio scale_right = right * width_ratio scale_top = top * height_ratio scale_bottom = bottom * height_ratio scale_center_x = center_x * width_ratio scale_center_y = center_y * height_ratio # Int coords on feature map/ground truth tensor left_idx = int(min(scale_left, width - 1)) right_idx = int(min(scale_right, width - 1)) top_idx = int(min(scale_top, height - 1)) bottom_idx = int(min(scale_bottom, height - 1)) # Generate gaussian heatmap scale_box_width = ceil(scale_right - scale_left) scale_box_height = ceil(scale_bottom - scale_top) radius = gaussian_radius((scale_box_height, scale_box_width), min_overlap=0.3) radius = max(0, int(radius)) gt_tl_heatmap[batch_id, label] = gen_gaussian_target( gt_tl_heatmap[batch_id, label], [left_idx, top_idx], radius) gt_br_heatmap[batch_id, label] = gen_gaussian_target( gt_br_heatmap[batch_id, label], [right_idx, bottom_idx], radius) # Generate corner offset left_offset = scale_left - left_idx top_offset = scale_top - top_idx right_offset = scale_right - right_idx bottom_offset = scale_bottom - bottom_idx gt_tl_offset[batch_id, 0, top_idx, left_idx] = left_offset gt_tl_offset[batch_id, 1, top_idx, left_idx] = top_offset gt_br_offset[batch_id, 0, bottom_idx, right_idx] = right_offset gt_br_offset[batch_id, 1, bottom_idx, right_idx] = bottom_offset # Generate corner embedding if with_corner_emb: corner_match.append([[top_idx, left_idx], [bottom_idx, right_idx]]) # Generate guiding shift if with_guiding_shift: gt_tl_guiding_shift[batch_id, 0, top_idx, left_idx] = scale_center_x - left_idx gt_tl_guiding_shift[batch_id, 1, top_idx, left_idx] = scale_center_y - top_idx gt_br_guiding_shift[batch_id, 0, bottom_idx, right_idx] = right_idx - scale_center_x gt_br_guiding_shift[ batch_id, 1, bottom_idx, right_idx] = bottom_idx - scale_center_y # Generate centripetal shift if with_centripetal_shift: gt_tl_centripetal_shift[batch_id, 0, top_idx, left_idx] = log(scale_center_x - scale_left) gt_tl_centripetal_shift[batch_id, 1, top_idx, left_idx] = log(scale_center_y - scale_top) gt_br_centripetal_shift[batch_id, 0, bottom_idx, right_idx] = log(scale_right - scale_center_x) gt_br_centripetal_shift[batch_id, 1, bottom_idx, right_idx] = log(scale_bottom - scale_center_y) if with_corner_emb: match.append(corner_match) target_result = dict( topleft_heatmap=gt_tl_heatmap, topleft_offset=gt_tl_offset, bottomright_heatmap=gt_br_heatmap, bottomright_offset=gt_br_offset) if with_corner_emb: target_result.update(corner_embedding=match) if with_guiding_shift: target_result.update( topleft_guiding_shift=gt_tl_guiding_shift, bottomright_guiding_shift=gt_br_guiding_shift) if with_centripetal_shift: target_result.update( topleft_centripetal_shift=gt_tl_centripetal_shift, bottomright_centripetal_shift=gt_br_centripetal_shift) return target_result def loss_by_feat( self, tl_heats: List[Tensor], br_heats: List[Tensor], tl_embs: List[Tensor], br_embs: List[Tensor], tl_offs: List[Tensor], br_offs: List[Tensor], batch_gt_instances: InstanceList, batch_img_metas: List[dict], batch_gt_instances_ignore: OptInstanceList = None) -> dict: """Calculate the loss based on the features extracted by the detection head. Args: tl_heats (list[Tensor]): Top-left corner heatmaps for each level with shape (N, num_classes, H, W). br_heats (list[Tensor]): Bottom-right corner heatmaps for each level with shape (N, num_classes, H, W). tl_embs (list[Tensor]): Top-left corner embeddings for each level with shape (N, corner_emb_channels, H, W). br_embs (list[Tensor]): Bottom-right corner embeddings for each level with shape (N, corner_emb_channels, H, W). tl_offs (list[Tensor]): Top-left corner offsets for each level with shape (N, corner_offset_channels, H, W). br_offs (list[Tensor]): Bottom-right corner offsets for each level with shape (N, corner_offset_channels, H, W). batch_gt_instances (list[:obj:`InstanceData`]): Batch of gt_instance. It usually includes ``bboxes`` and ``labels`` attributes. batch_img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): Specify which bounding boxes can be ignored when computing the loss. Returns: dict[str, Tensor]: A dictionary of loss components. Containing the following losses: - det_loss (list[Tensor]): Corner keypoint losses of all feature levels. - pull_loss (list[Tensor]): Part one of AssociativeEmbedding losses of all feature levels. - push_loss (list[Tensor]): Part two of AssociativeEmbedding losses of all feature levels. - off_loss (list[Tensor]): Corner offset losses of all feature levels. """ gt_bboxes = [ gt_instances.bboxes for gt_instances in batch_gt_instances ] gt_labels = [ gt_instances.labels for gt_instances in batch_gt_instances ] targets = self.get_targets( gt_bboxes, gt_labels, tl_heats[-1].shape, batch_img_metas[0]['batch_input_shape'], with_corner_emb=self.with_corner_emb) mlvl_targets = [targets for _ in range(self.num_feat_levels)] det_losses, pull_losses, push_losses, off_losses = multi_apply( self.loss_by_feat_single, tl_heats, br_heats, tl_embs, br_embs, tl_offs, br_offs, mlvl_targets) loss_dict = dict(det_loss=det_losses, off_loss=off_losses) if self.with_corner_emb: loss_dict.update(pull_loss=pull_losses, push_loss=push_losses) return loss_dict def loss_by_feat_single(self, tl_hmp: Tensor, br_hmp: Tensor, tl_emb: Optional[Tensor], br_emb: Optional[Tensor], tl_off: Tensor, br_off: Tensor, targets: dict) -> Tuple[Tensor, ...]: """Calculate the loss of a single scale level based on the features extracted by the detection head. Args: tl_hmp (Tensor): Top-left corner heatmap for current level with shape (N, num_classes, H, W). br_hmp (Tensor): Bottom-right corner heatmap for current level with shape (N, num_classes, H, W). tl_emb (Tensor, optional): Top-left corner embedding for current level with shape (N, corner_emb_channels, H, W). br_emb (Tensor, optional): Bottom-right corner embedding for current level with shape (N, corner_emb_channels, H, W). tl_off (Tensor): Top-left corner offset for current level with shape (N, corner_offset_channels, H, W). br_off (Tensor): Bottom-right corner offset for current level with shape (N, corner_offset_channels, H, W). targets (dict): Corner target generated by `get_targets`. Returns: tuple[torch.Tensor]: Losses of the head's different branches containing the following losses: - det_loss (Tensor): Corner keypoint loss. - pull_loss (Tensor): Part one of AssociativeEmbedding loss. - push_loss (Tensor): Part two of AssociativeEmbedding loss. - off_loss (Tensor): Corner offset loss. """ gt_tl_hmp = targets['topleft_heatmap'] gt_br_hmp = targets['bottomright_heatmap'] gt_tl_off = targets['topleft_offset'] gt_br_off = targets['bottomright_offset'] gt_embedding = targets['corner_embedding'] # Detection loss tl_det_loss = self.loss_heatmap( tl_hmp.sigmoid(), gt_tl_hmp, avg_factor=max(1, gt_tl_hmp.eq(1).sum())) br_det_loss = self.loss_heatmap( br_hmp.sigmoid(), gt_br_hmp, avg_factor=max(1, gt_br_hmp.eq(1).sum())) det_loss = (tl_det_loss + br_det_loss) / 2.0 # AssociativeEmbedding loss if self.with_corner_emb and self.loss_embedding is not None: pull_loss, push_loss = self.loss_embedding(tl_emb, br_emb, gt_embedding) else: pull_loss, push_loss = None, None # Offset loss # We only compute the offset loss at the real corner position. # The value of real corner would be 1 in heatmap ground truth. # The mask is computed in class agnostic mode and its shape is # batch * 1 * width * height. tl_off_mask = gt_tl_hmp.eq(1).sum(1).gt(0).unsqueeze(1).type_as( gt_tl_hmp) br_off_mask = gt_br_hmp.eq(1).sum(1).gt(0).unsqueeze(1).type_as( gt_br_hmp) tl_off_loss = self.loss_offset( tl_off, gt_tl_off, tl_off_mask, avg_factor=max(1, tl_off_mask.sum())) br_off_loss = self.loss_offset( br_off, gt_br_off, br_off_mask, avg_factor=max(1, br_off_mask.sum())) off_loss = (tl_off_loss + br_off_loss) / 2.0 return det_loss, pull_loss, push_loss, off_loss def predict_by_feat(self, tl_heats: List[Tensor], br_heats: List[Tensor], tl_embs: List[Tensor], br_embs: List[Tensor], tl_offs: List[Tensor], br_offs: List[Tensor], batch_img_metas: Optional[List[dict]] = None, rescale: bool = False, with_nms: bool = True) -> InstanceList: """Transform a batch of output features extracted from the head into bbox results. Args: tl_heats (list[Tensor]): Top-left corner heatmaps for each level with shape (N, num_classes, H, W). br_heats (list[Tensor]): Bottom-right corner heatmaps for each level with shape (N, num_classes, H, W). tl_embs (list[Tensor]): Top-left corner embeddings for each level with shape (N, corner_emb_channels, H, W). br_embs (list[Tensor]): Bottom-right corner embeddings for each level with shape (N, corner_emb_channels, H, W). tl_offs (list[Tensor]): Top-left corner offsets for each level with shape (N, corner_offset_channels, H, W). br_offs (list[Tensor]): Bottom-right corner offsets for each level with shape (N, corner_offset_channels, H, W). batch_img_metas (list[dict], optional): Batch image meta info. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: list[:obj:`InstanceData`]: Object detection results of each image after the post process. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). """ assert tl_heats[-1].shape[0] == br_heats[-1].shape[0] == len( batch_img_metas) result_list = [] for img_id in range(len(batch_img_metas)): result_list.append( self._predict_by_feat_single( tl_heats[-1][img_id:img_id + 1, :], br_heats[-1][img_id:img_id + 1, :], tl_offs[-1][img_id:img_id + 1, :], br_offs[-1][img_id:img_id + 1, :], batch_img_metas[img_id], tl_emb=tl_embs[-1][img_id:img_id + 1, :], br_emb=br_embs[-1][img_id:img_id + 1, :], rescale=rescale, with_nms=with_nms)) return result_list def _predict_by_feat_single(self, tl_heat: Tensor, br_heat: Tensor, tl_off: Tensor, br_off: Tensor, img_meta: dict, tl_emb: Optional[Tensor] = None, br_emb: Optional[Tensor] = None, tl_centripetal_shift: Optional[Tensor] = None, br_centripetal_shift: Optional[Tensor] = None, rescale: bool = False, with_nms: bool = True) -> InstanceData: """Transform a single image's features extracted from the head into bbox results. Args: tl_heat (Tensor): Top-left corner heatmap for current level with shape (N, num_classes, H, W). br_heat (Tensor): Bottom-right corner heatmap for current level with shape (N, num_classes, H, W). tl_off (Tensor): Top-left corner offset for current level with shape (N, corner_offset_channels, H, W). br_off (Tensor): Bottom-right corner offset for current level with shape (N, corner_offset_channels, H, W). img_meta (dict): Meta information of current image, e.g., image size, scaling factor, etc. tl_emb (Tensor): Top-left corner embedding for current level with shape (N, corner_emb_channels, H, W). br_emb (Tensor): Bottom-right corner embedding for current level with shape (N, corner_emb_channels, H, W). tl_centripetal_shift: Top-left corner's centripetal shift for current level with shape (N, 2, H, W). br_centripetal_shift: Bottom-right corner's centripetal shift for current level with shape (N, 2, H, W). rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: :obj:`InstanceData`: Detection results of each image after the post process. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). """ if isinstance(img_meta, (list, tuple)): img_meta = img_meta[0] batch_bboxes, batch_scores, batch_clses = self._decode_heatmap( tl_heat=tl_heat.sigmoid(), br_heat=br_heat.sigmoid(), tl_off=tl_off, br_off=br_off, tl_emb=tl_emb, br_emb=br_emb, tl_centripetal_shift=tl_centripetal_shift, br_centripetal_shift=br_centripetal_shift, img_meta=img_meta, k=self.test_cfg.corner_topk, kernel=self.test_cfg.local_maximum_kernel, distance_threshold=self.test_cfg.distance_threshold) if rescale and 'scale_factor' in img_meta: batch_bboxes /= batch_bboxes.new_tensor( img_meta['scale_factor']).repeat((1, 2)) bboxes = batch_bboxes.view([-1, 4]) scores = batch_scores.view(-1) clses = batch_clses.view(-1) det_bboxes = torch.cat([bboxes, scores.unsqueeze(-1)], -1) keepinds = (det_bboxes[:, -1] > -0.1) det_bboxes = det_bboxes[keepinds] det_labels = clses[keepinds] if with_nms: det_bboxes, det_labels = self._bboxes_nms(det_bboxes, det_labels, self.test_cfg) results = InstanceData() results.bboxes = det_bboxes[..., :4] results.scores = det_bboxes[..., 4] results.labels = det_labels return results def _bboxes_nms(self, bboxes: Tensor, labels: Tensor, cfg: ConfigDict) -> Tuple[Tensor, Tensor]: """bboxes nms.""" if 'nms_cfg' in cfg: warning.warn('nms_cfg in test_cfg will be deprecated. ' 'Please rename it as nms') if 'nms' not in cfg: cfg.nms = cfg.nms_cfg if labels.numel() > 0: max_num = cfg.max_per_img bboxes, keep = batched_nms(bboxes[:, :4], bboxes[:, -1].contiguous(), labels, cfg.nms) if max_num > 0: bboxes = bboxes[:max_num] labels = labels[keep][:max_num] return bboxes, labels def _decode_heatmap(self, tl_heat: Tensor, br_heat: Tensor, tl_off: Tensor, br_off: Tensor, tl_emb: Optional[Tensor] = None, br_emb: Optional[Tensor] = None, tl_centripetal_shift: Optional[Tensor] = None, br_centripetal_shift: Optional[Tensor] = None, img_meta: Optional[dict] = None, k: int = 100, kernel: int = 3, distance_threshold: float = 0.5, num_dets: int = 1000) -> Tuple[Tensor, Tensor, Tensor]: """Transform outputs into detections raw bbox prediction. Args: tl_heat (Tensor): Top-left corner heatmap for current level with shape (N, num_classes, H, W). br_heat (Tensor): Bottom-right corner heatmap for current level with shape (N, num_classes, H, W). tl_off (Tensor): Top-left corner offset for current level with shape (N, corner_offset_channels, H, W). br_off (Tensor): Bottom-right corner offset for current level with shape (N, corner_offset_channels, H, W). tl_emb (Tensor, Optional): Top-left corner embedding for current level with shape (N, corner_emb_channels, H, W). br_emb (Tensor, Optional): Bottom-right corner embedding for current level with shape (N, corner_emb_channels, H, W). tl_centripetal_shift (Tensor, Optional): Top-left centripetal shift for current level with shape (N, 2, H, W). br_centripetal_shift (Tensor, Optional): Bottom-right centripetal shift for current level with shape (N, 2, H, W). img_meta (dict): Meta information of current image, e.g., image size, scaling factor, etc. k (int): Get top k corner keypoints from heatmap. kernel (int): Max pooling kernel for extract local maximum pixels. distance_threshold (float): Distance threshold. Top-left and bottom-right corner keypoints with feature distance less than the threshold will be regarded as keypoints from same object. num_dets (int): Num of raw boxes before doing nms. Returns: tuple[torch.Tensor]: Decoded output of CornerHead, containing the following Tensors: - bboxes (Tensor): Coords of each box. - scores (Tensor): Scores of each box. - clses (Tensor): Categories of each box. """ with_embedding = tl_emb is not None and br_emb is not None with_centripetal_shift = ( tl_centripetal_shift is not None and br_centripetal_shift is not None) assert with_embedding + with_centripetal_shift == 1 batch, _, height, width = tl_heat.size() if torch.onnx.is_in_onnx_export(): inp_h, inp_w = img_meta['pad_shape_for_onnx'][:2] else: inp_h, inp_w = img_meta['batch_input_shape'][:2] # perform nms on heatmaps tl_heat = get_local_maximum(tl_heat, kernel=kernel) br_heat = get_local_maximum(br_heat, kernel=kernel) tl_scores, tl_inds, tl_clses, tl_ys, tl_xs = get_topk_from_heatmap( tl_heat, k=k) br_scores, br_inds, br_clses, br_ys, br_xs = get_topk_from_heatmap( br_heat, k=k) # We use repeat instead of expand here because expand is a # shallow-copy function. Thus it could cause unexpected testing result # sometimes. Using expand will decrease about 10% mAP during testing # compared to repeat. tl_ys = tl_ys.view(batch, k, 1).repeat(1, 1, k) tl_xs = tl_xs.view(batch, k, 1).repeat(1, 1, k) br_ys = br_ys.view(batch, 1, k).repeat(1, k, 1) br_xs = br_xs.view(batch, 1, k).repeat(1, k, 1) tl_off = transpose_and_gather_feat(tl_off, tl_inds) tl_off = tl_off.view(batch, k, 1, 2) br_off = transpose_and_gather_feat(br_off, br_inds) br_off = br_off.view(batch, 1, k, 2) tl_xs = tl_xs + tl_off[..., 0] tl_ys = tl_ys + tl_off[..., 1] br_xs = br_xs + br_off[..., 0] br_ys = br_ys + br_off[..., 1] if with_centripetal_shift: tl_centripetal_shift = transpose_and_gather_feat( tl_centripetal_shift, tl_inds).view(batch, k, 1, 2).exp() br_centripetal_shift = transpose_and_gather_feat( br_centripetal_shift, br_inds).view(batch, 1, k, 2).exp() tl_ctxs = tl_xs + tl_centripetal_shift[..., 0] tl_ctys = tl_ys + tl_centripetal_shift[..., 1] br_ctxs = br_xs - br_centripetal_shift[..., 0] br_ctys = br_ys - br_centripetal_shift[..., 1] # all possible boxes based on top k corners (ignoring class) tl_xs *= (inp_w / width) tl_ys *= (inp_h / height) br_xs *= (inp_w / width) br_ys *= (inp_h / height) if with_centripetal_shift: tl_ctxs *= (inp_w / width) tl_ctys *= (inp_h / height) br_ctxs *= (inp_w / width) br_ctys *= (inp_h / height) x_off, y_off = 0, 0 # no crop if not torch.onnx.is_in_onnx_export(): # since `RandomCenterCropPad` is done on CPU with numpy and it's # not dynamic traceable when exporting to ONNX, thus 'border' # does not appears as key in 'img_meta'. As a tmp solution, # we move this 'border' handle part to the postprocess after # finished exporting to ONNX, which is handle in # `mmdet/core/export/model_wrappers.py`. Though difference between # pytorch and exported onnx model, it might be ignored since # comparable performance is achieved between them (e.g. 40.4 vs # 40.6 on COCO val2017, for CornerNet without test-time flip) if 'border' in img_meta: x_off = img_meta['border'][2] y_off = img_meta['border'][0] tl_xs -= x_off tl_ys -= y_off br_xs -= x_off br_ys -= y_off zeros = tl_xs.new_zeros(*tl_xs.size()) tl_xs = torch.where(tl_xs > 0.0, tl_xs, zeros) tl_ys = torch.where(tl_ys > 0.0, tl_ys, zeros) br_xs = torch.where(br_xs > 0.0, br_xs, zeros) br_ys = torch.where(br_ys > 0.0, br_ys, zeros) bboxes = torch.stack((tl_xs, tl_ys, br_xs, br_ys), dim=3) area_bboxes = ((br_xs - tl_xs) * (br_ys - tl_ys)).abs() if with_centripetal_shift: tl_ctxs -= x_off tl_ctys -= y_off br_ctxs -= x_off br_ctys -= y_off tl_ctxs *= tl_ctxs.gt(0.0).type_as(tl_ctxs) tl_ctys *= tl_ctys.gt(0.0).type_as(tl_ctys) br_ctxs *= br_ctxs.gt(0.0).type_as(br_ctxs) br_ctys *= br_ctys.gt(0.0).type_as(br_ctys) ct_bboxes = torch.stack((tl_ctxs, tl_ctys, br_ctxs, br_ctys), dim=3) area_ct_bboxes = ((br_ctxs - tl_ctxs) * (br_ctys - tl_ctys)).abs() rcentral = torch.zeros_like(ct_bboxes) # magic nums from paper section 4.1 mu = torch.ones_like(area_bboxes) / 2.4 mu[area_bboxes > 3500] = 1 / 2.1 # large bbox have smaller mu bboxes_center_x = (bboxes[..., 0] + bboxes[..., 2]) / 2 bboxes_center_y = (bboxes[..., 1] + bboxes[..., 3]) / 2 rcentral[..., 0] = bboxes_center_x - mu * (bboxes[..., 2] - bboxes[..., 0]) / 2 rcentral[..., 1] = bboxes_center_y - mu * (bboxes[..., 3] - bboxes[..., 1]) / 2 rcentral[..., 2] = bboxes_center_x + mu * (bboxes[..., 2] - bboxes[..., 0]) / 2 rcentral[..., 3] = bboxes_center_y + mu * (bboxes[..., 3] - bboxes[..., 1]) / 2 area_rcentral = ((rcentral[..., 2] - rcentral[..., 0]) * (rcentral[..., 3] - rcentral[..., 1])).abs() dists = area_ct_bboxes / area_rcentral tl_ctx_inds = (ct_bboxes[..., 0] <= rcentral[..., 0]) | ( ct_bboxes[..., 0] >= rcentral[..., 2]) tl_cty_inds = (ct_bboxes[..., 1] <= rcentral[..., 1]) | ( ct_bboxes[..., 1] >= rcentral[..., 3]) br_ctx_inds = (ct_bboxes[..., 2] <= rcentral[..., 0]) | ( ct_bboxes[..., 2] >= rcentral[..., 2]) br_cty_inds = (ct_bboxes[..., 3] <= rcentral[..., 1]) | ( ct_bboxes[..., 3] >= rcentral[..., 3]) if with_embedding: tl_emb = transpose_and_gather_feat(tl_emb, tl_inds) tl_emb = tl_emb.view(batch, k, 1) br_emb = transpose_and_gather_feat(br_emb, br_inds) br_emb = br_emb.view(batch, 1, k) dists = torch.abs(tl_emb - br_emb) tl_scores = tl_scores.view(batch, k, 1).repeat(1, 1, k) br_scores = br_scores.view(batch, 1, k).repeat(1, k, 1) scores = (tl_scores + br_scores) / 2 # scores for all possible boxes # tl and br should have same class tl_clses = tl_clses.view(batch, k, 1).repeat(1, 1, k) br_clses = br_clses.view(batch, 1, k).repeat(1, k, 1) cls_inds = (tl_clses != br_clses) # reject boxes based on distances dist_inds = dists > distance_threshold # reject boxes based on widths and heights width_inds = (br_xs <= tl_xs) height_inds = (br_ys <= tl_ys) # No use `scores[cls_inds]`, instead we use `torch.where` here. # Since only 1-D indices with type 'tensor(bool)' are supported # when exporting to ONNX, any other bool indices with more dimensions # (e.g. 2-D bool tensor) as input parameter in node is invalid negative_scores = -1 * torch.ones_like(scores) scores = torch.where(cls_inds, negative_scores, scores) scores = torch.where(width_inds, negative_scores, scores) scores = torch.where(height_inds, negative_scores, scores) scores = torch.where(dist_inds, negative_scores, scores) if with_centripetal_shift: scores[tl_ctx_inds] = -1 scores[tl_cty_inds] = -1 scores[br_ctx_inds] = -1 scores[br_cty_inds] = -1 scores = scores.view(batch, -1) scores, inds = torch.topk(scores, num_dets) scores = scores.unsqueeze(2) bboxes = bboxes.view(batch, -1, 4) bboxes = gather_feat(bboxes, inds) clses = tl_clses.contiguous().view(batch, -1, 1) clses = gather_feat(clses, inds) return bboxes, scores, clses