# dataset settings dataset_type = 'ImageNet' img_norm_cfg = dict( mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255], std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255], to_rgb=True) image_size = 384 train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='RandomResizedCrop', size=image_size, backend='pillow', interpolation='bicubic'), dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'), # dict( # type='RandAugment', # policies={{_base_.rand_increasing_policies}}, # num_policies=2, # total_level=10, # magnitude_level=9, # magnitude_std=0.5, # hparams=dict( # pad_val=[round(x) for x in img_norm_cfg['mean'][::-1]], # interpolation='bicubic')), dict( type='RandomErasing', erase_prob=0.25, mode='rand', min_area_ratio=0.02, max_area_ratio=1 / 3, fill_color=img_norm_cfg['mean'][::-1], fill_std=img_norm_cfg['std'][::-1]), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='ToTensor', keys=['gt_label']), dict(type='Collect', keys=['img', 'gt_label']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='Resize', size=(image_size, -1), backend='pillow', interpolation='bicubic'), dict(type='CenterCrop', crop_size=image_size), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ] data = dict( samples_per_gpu=64, workers_per_gpu=8, train=dict( type=dataset_type, data_prefix='data/imagenet/train', pipeline=train_pipeline), val=dict( type=dataset_type, data_prefix='data/imagenet/val', ann_file='data/imagenet/meta/val.txt', pipeline=test_pipeline), test=dict( # replace `data/val` with `data/test` for standard test type=dataset_type, data_prefix='data/imagenet/val', ann_file='data/imagenet/meta/val.txt', pipeline=test_pipeline)) evaluation = dict(interval=10, metric='accuracy')