# Copyright (c) OpenMMLab. All rights reserved. import base64 import os import cv2 import mmcv import torch from mmengine.model.utils import revert_sync_batchnorm from ts.torch_handler.base_handler import BaseHandler from mmseg.apis import inference_model, init_model class MMsegHandler(BaseHandler): def initialize(self, context): properties = context.system_properties self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu' self.device = torch.device(self.map_location + ':' + str(properties.get('gpu_id')) if torch.cuda. is_available() else self.map_location) self.manifest = context.manifest model_dir = properties.get('model_dir') serialized_file = self.manifest['model']['serializedFile'] checkpoint = os.path.join(model_dir, serialized_file) self.config_file = os.path.join(model_dir, 'config.py') self.model = init_model(self.config_file, checkpoint, self.device) self.model = revert_sync_batchnorm(self.model) self.initialized = True def preprocess(self, data): images = [] for row in data: image = row.get('data') or row.get('body') if isinstance(image, str): image = base64.b64decode(image) image = mmcv.imfrombytes(image) images.append(image) return images def inference(self, data, *args, **kwargs): results = [inference_model(self.model, img) for img in data] return results def postprocess(self, data): output = [] for image_result in data: _, buffer = cv2.imencode('.png', image_result[0].astype('uint8')) content = buffer.tobytes() output.append(content) return output