# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Tuple, Union import mmcv import numpy as np from mmengine.utils import is_str def palette_val(palette: List[tuple]) -> List[tuple]: """Convert palette to matplotlib palette. Args: palette (List[tuple]): A list of color tuples. Returns: List[tuple[float]]: A list of RGB matplotlib color tuples. """ new_palette = [] for color in palette: color = [c / 255 for c in color] new_palette.append(tuple(color)) return new_palette def get_palette(palette: Union[List[tuple], str, tuple], num_classes: int) -> List[Tuple[int]]: """Get palette from various inputs. Args: palette (list[tuple] | str | tuple): palette inputs. num_classes (int): the number of classes. Returns: list[tuple[int]]: A list of color tuples. """ assert isinstance(num_classes, int) if isinstance(palette, list): dataset_palette = palette elif isinstance(palette, tuple): dataset_palette = [palette] * num_classes elif palette == 'random' or palette is None: state = np.random.get_state() # random color np.random.seed(42) palette = np.random.randint(0, 256, size=(num_classes, 3)) np.random.set_state(state) dataset_palette = [tuple(c) for c in palette] elif palette == 'coco': from mmdet.datasets import CocoDataset, CocoPanopticDataset dataset_palette = CocoDataset.METAINFO['palette'] if len(dataset_palette) < num_classes: dataset_palette = CocoPanopticDataset.METAINFO['palette'] elif palette == 'citys': from mmdet.datasets import CityscapesDataset dataset_palette = CityscapesDataset.METAINFO['palette'] elif palette == 'voc': from mmdet.datasets import VOCDataset dataset_palette = VOCDataset.METAINFO['palette'] elif is_str(palette): dataset_palette = [mmcv.color_val(palette)[::-1]] * num_classes else: raise TypeError(f'Invalid type for palette: {type(palette)}') assert len(dataset_palette) >= num_classes, \ 'The length of palette should not be less than `num_classes`.' return dataset_palette def _get_adaptive_scales(areas: np.ndarray, min_area: int = 800, max_area: int = 30000) -> np.ndarray: """Get adaptive scales according to areas. The scale range is [0.5, 1.0]. When the area is less than ``min_area``, the scale is 0.5 while the area is larger than ``max_area``, the scale is 1.0. Args: areas (ndarray): The areas of bboxes or masks with the shape of (n, ). min_area (int): Lower bound areas for adaptive scales. Defaults to 800. max_area (int): Upper bound areas for adaptive scales. Defaults to 30000. Returns: ndarray: The adaotive scales with the shape of (n, ). """ scales = 0.5 + (areas - min_area) // (max_area - min_area) scales = np.clip(scales, 0.5, 1.0) return scales def jitter_color(color: tuple) -> tuple: """Randomly jitter the given color in order to better distinguish instances with the same class. Args: color (tuple): The RGB color tuple. Each value is between [0, 255]. Returns: tuple: The jittered color tuple. """ jitter = np.random.rand(3) jitter = (jitter / np.linalg.norm(jitter) - 0.5) * 0.5 * 255 color = np.clip(jitter + color, 0, 255).astype(np.uint8) return tuple(color)