# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp from collections import OrderedDict import mmengine import torch from mmengine.runner import CheckpointLoader def convert_vit(ckpt): new_ckpt = OrderedDict() for k, v in ckpt.items(): if k.startswith('head'): continue if k.startswith('norm'): new_k = k.replace('norm.', 'ln1.') elif k.startswith('patch_embed'): if 'proj' in k: new_k = k.replace('proj', 'projection') else: new_k = k elif k.startswith('blocks'): if 'norm' in k: new_k = k.replace('norm', 'ln') elif 'mlp.fc1' in k: new_k = k.replace('mlp.fc1', 'ffn.layers.0.0') elif 'mlp.fc2' in k: new_k = k.replace('mlp.fc2', 'ffn.layers.1') elif 'attn.qkv' in k: new_k = k.replace('attn.qkv.', 'attn.attn.in_proj_') elif 'attn.proj' in k: new_k = k.replace('attn.proj', 'attn.attn.out_proj') else: new_k = k new_k = new_k.replace('blocks.', 'layers.') else: new_k = k new_ckpt[new_k] = v return new_ckpt def main(): parser = argparse.ArgumentParser( description='Convert keys in timm pretrained vit models to ' 'MMSegmentation style.') parser.add_argument('src', help='src model path or url') # The dst path must be a full path of the new checkpoint. parser.add_argument('dst', help='save path') args = parser.parse_args() checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') if 'state_dict' in checkpoint: # timm checkpoint state_dict = checkpoint['state_dict'] elif 'model' in checkpoint: # deit checkpoint state_dict = checkpoint['model'] else: state_dict = checkpoint weight = convert_vit(state_dict) mmengine.mkdir_or_exist(osp.dirname(args.dst)) torch.save(weight, args.dst) if __name__ == '__main__': main()