# Copyright (c) OpenMMLab. All rights reserved. import argparse import glob import math import os import os.path as osp import tempfile import zipfile import mmcv import numpy as np from mmengine.utils import ProgressBar, mkdir_or_exist def parse_args(): parser = argparse.ArgumentParser( description='Convert vaihingen dataset to mmsegmentation format') parser.add_argument('dataset_path', help='vaihingen folder path') parser.add_argument('--tmp_dir', help='path of the temporary directory') parser.add_argument('-o', '--out_dir', help='output path') parser.add_argument( '--clip_size', type=int, help='clipped size of image after preparation', default=512) parser.add_argument( '--stride_size', type=int, help='stride of clipping original images', default=256) args = parser.parse_args() return args def clip_big_image(image_path, clip_save_dir, to_label=False): # Original image of Vaihingen dataset is very large, thus pre-processing # of them is adopted. Given fixed clip size and stride size to generate # clipped image, the intersection of width and height is determined. # For example, given one 5120 x 5120 original image, the clip size is # 512 and stride size is 256, thus it would generate 20x20 = 400 images # whose size are all 512x512. image = mmcv.imread(image_path) h, w, c = image.shape cs = args.clip_size ss = args.stride_size num_rows = math.ceil((h - cs) / ss) if math.ceil( (h - cs) / ss) * ss + cs >= h else math.ceil((h - cs) / ss) + 1 num_cols = math.ceil((w - cs) / ss) if math.ceil( (w - cs) / ss) * ss + cs >= w else math.ceil((w - cs) / ss) + 1 x, y = np.meshgrid(np.arange(num_cols + 1), np.arange(num_rows + 1)) xmin = x * cs ymin = y * cs xmin = xmin.ravel() ymin = ymin.ravel() xmin_offset = np.where(xmin + cs > w, w - xmin - cs, np.zeros_like(xmin)) ymin_offset = np.where(ymin + cs > h, h - ymin - cs, np.zeros_like(ymin)) boxes = np.stack([ xmin + xmin_offset, ymin + ymin_offset, np.minimum(xmin + cs, w), np.minimum(ymin + cs, h) ], axis=1) if to_label: color_map = np.array([[0, 0, 0], [255, 255, 255], [255, 0, 0], [255, 255, 0], [0, 255, 0], [0, 255, 255], [0, 0, 255]]) flatten_v = np.matmul( image.reshape(-1, c), np.array([2, 3, 4]).reshape(3, 1)) out = np.zeros_like(flatten_v) for idx, class_color in enumerate(color_map): value_idx = np.matmul(class_color, np.array([2, 3, 4]).reshape(3, 1)) out[flatten_v == value_idx] = idx image = out.reshape(h, w) for box in boxes: start_x, start_y, end_x, end_y = box clipped_image = image[start_y:end_y, start_x:end_x] if to_label else image[ start_y:end_y, start_x:end_x, :] area_idx = osp.basename(image_path).split('_')[3].strip('.tif') mmcv.imwrite( clipped_image.astype(np.uint8), osp.join(clip_save_dir, f'{area_idx}_{start_x}_{start_y}_{end_x}_{end_y}.png')) def main(): splits = { 'train': [ 'area1', 'area11', 'area13', 'area15', 'area17', 'area21', 'area23', 'area26', 'area28', 'area3', 'area30', 'area32', 'area34', 'area37', 'area5', 'area7' ], 'val': [ 'area6', 'area24', 'area35', 'area16', 'area14', 'area22', 'area10', 'area4', 'area2', 'area20', 'area8', 'area31', 'area33', 'area27', 'area38', 'area12', 'area29' ], } dataset_path = args.dataset_path if args.out_dir is None: out_dir = osp.join('data', 'vaihingen') else: out_dir = args.out_dir print('Making directories...') mkdir_or_exist(osp.join(out_dir, 'img_dir', 'train')) mkdir_or_exist(osp.join(out_dir, 'img_dir', 'val')) mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'train')) mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'val')) zipp_list = glob.glob(os.path.join(dataset_path, '*.zip')) print('Find the data', zipp_list) with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir: for zipp in zipp_list: zip_file = zipfile.ZipFile(zipp) zip_file.extractall(tmp_dir) src_path_list = glob.glob(os.path.join(tmp_dir, '*.tif')) if 'ISPRS_semantic_labeling_Vaihingen' in zipp: src_path_list = glob.glob( os.path.join(os.path.join(tmp_dir, 'top'), '*.tif')) if 'ISPRS_semantic_labeling_Vaihingen_ground_truth_eroded_COMPLETE' in zipp: # noqa src_path_list = glob.glob(os.path.join(tmp_dir, '*.tif')) # delete unused area9 ground truth for area_ann in src_path_list: if 'area9' in area_ann: src_path_list.remove(area_ann) prog_bar = ProgressBar(len(src_path_list)) for i, src_path in enumerate(src_path_list): area_idx = osp.basename(src_path).split('_')[3].strip('.tif') data_type = 'train' if area_idx in splits['train'] else 'val' if 'noBoundary' in src_path: dst_dir = osp.join(out_dir, 'ann_dir', data_type) clip_big_image(src_path, dst_dir, to_label=True) else: dst_dir = osp.join(out_dir, 'img_dir', data_type) clip_big_image(src_path, dst_dir, to_label=False) prog_bar.update() print('Removing the temporary files...') print('Done!') if __name__ == '__main__': args = parse_args() main()