# Copyright (c) OpenMMLab. All rights reserved. import argparse import glob import math import os import os.path as osp import tempfile import zipfile import mmcv import numpy as np from mmengine.utils import ProgressBar, mkdir_or_exist def parse_args(): parser = argparse.ArgumentParser( description='Convert potsdam dataset to mmsegmentation format') parser.add_argument('dataset_path', help='potsdam folder path') parser.add_argument('--tmp_dir', help='path of the temporary directory') parser.add_argument('-o', '--out_dir', help='output path') parser.add_argument( '--clip_size', type=int, help='clipped size of image after preparation', default=512) parser.add_argument( '--stride_size', type=int, help='stride of clipping original images', default=256) args = parser.parse_args() return args def clip_big_image(image_path, clip_save_dir, args, to_label=False): # Original image of Potsdam dataset is very large, thus pre-processing # of them is adopted. Given fixed clip size and stride size to generate # clipped image, the intersection of width and height is determined. # For example, given one 5120 x 5120 original image, the clip size is # 512 and stride size is 256, thus it would generate 20x20 = 400 images # whose size are all 512x512. image = mmcv.imread(image_path) h, w, c = image.shape clip_size = args.clip_size stride_size = args.stride_size num_rows = math.ceil((h - clip_size) / stride_size) if math.ceil( (h - clip_size) / stride_size) * stride_size + clip_size >= h else math.ceil( (h - clip_size) / stride_size) + 1 num_cols = math.ceil((w - clip_size) / stride_size) if math.ceil( (w - clip_size) / stride_size) * stride_size + clip_size >= w else math.ceil( (w - clip_size) / stride_size) + 1 x, y = np.meshgrid(np.arange(num_cols + 1), np.arange(num_rows + 1)) xmin = x * clip_size ymin = y * clip_size xmin = xmin.ravel() ymin = ymin.ravel() xmin_offset = np.where(xmin + clip_size > w, w - xmin - clip_size, np.zeros_like(xmin)) ymin_offset = np.where(ymin + clip_size > h, h - ymin - clip_size, np.zeros_like(ymin)) boxes = np.stack([ xmin + xmin_offset, ymin + ymin_offset, np.minimum(xmin + clip_size, w), np.minimum(ymin + clip_size, h) ], axis=1) if to_label: color_map = np.array([[0, 0, 0], [255, 255, 255], [255, 0, 0], [255, 255, 0], [0, 255, 0], [0, 255, 255], [0, 0, 255]]) flatten_v = np.matmul( image.reshape(-1, c), np.array([2, 3, 4]).reshape(3, 1)) out = np.zeros_like(flatten_v) for idx, class_color in enumerate(color_map): value_idx = np.matmul(class_color, np.array([2, 3, 4]).reshape(3, 1)) out[flatten_v == value_idx] = idx image = out.reshape(h, w) for box in boxes: start_x, start_y, end_x, end_y = box clipped_image = image[start_y:end_y, start_x:end_x] if to_label else image[ start_y:end_y, start_x:end_x, :] idx_i, idx_j = osp.basename(image_path).split('_')[2:4] mmcv.imwrite( clipped_image.astype(np.uint8), osp.join( clip_save_dir, f'{idx_i}_{idx_j}_{start_x}_{start_y}_{end_x}_{end_y}.png')) def main(): args = parse_args() splits = { 'train': [ '2_10', '2_11', '2_12', '3_10', '3_11', '3_12', '4_10', '4_11', '4_12', '5_10', '5_11', '5_12', '6_10', '6_11', '6_12', '6_7', '6_8', '6_9', '7_10', '7_11', '7_12', '7_7', '7_8', '7_9' ], 'val': [ '5_15', '6_15', '6_13', '3_13', '4_14', '6_14', '5_14', '2_13', '4_15', '2_14', '5_13', '4_13', '3_14', '7_13' ] } dataset_path = args.dataset_path if args.out_dir is None: out_dir = osp.join('data', 'potsdam') else: out_dir = args.out_dir print('Making directories...') mkdir_or_exist(osp.join(out_dir, 'img_dir', 'train')) mkdir_or_exist(osp.join(out_dir, 'img_dir', 'val')) mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'train')) mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'val')) zipp_list = glob.glob(os.path.join(dataset_path, '*.zip')) print('Find the data', zipp_list) for zipp in zipp_list: with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir: zip_file = zipfile.ZipFile(zipp) zip_file.extractall(tmp_dir) src_path_list = glob.glob(os.path.join(tmp_dir, '*.tif')) if not len(src_path_list): sub_tmp_dir = os.path.join(tmp_dir, os.listdir(tmp_dir)[0]) src_path_list = glob.glob(os.path.join(sub_tmp_dir, '*.tif')) prog_bar = ProgressBar(len(src_path_list)) for i, src_path in enumerate(src_path_list): idx_i, idx_j = osp.basename(src_path).split('_')[2:4] data_type = 'train' if f'{idx_i}_{idx_j}' in splits[ 'train'] else 'val' if 'label' in src_path: dst_dir = osp.join(out_dir, 'ann_dir', data_type) clip_big_image(src_path, dst_dir, args, to_label=True) else: dst_dir = osp.join(out_dir, 'img_dir', data_type) clip_big_image(src_path, dst_dir, args, to_label=False) prog_bar.update() print('Removing the temporary files...') print('Done!') if __name__ == '__main__': main()