# Copyright (c) OpenMMLab. All rights reserved. import warnings from typing import Dict, Tuple, Union import torch import torch.nn as nn from torch import Tensor from mmdet.registry import MODELS from mmdet.structures import OptSampleList, SampleList from ..layers import SinePositionalEncoding from ..layers.transformer.grounding_dino_layers import ( GroundingDinoTransformerDecoder, GroundingDinoTransformerEncoder) from .dino import DINO from .glip import (create_positive_map, create_positive_map_label_to_token, run_ner) @MODELS.register_module() class GroundingDINO(DINO): """Implementation of `Grounding DINO: Marrying DINO with Grounded Pre- Training for Open-Set Object Detection. `_ Code is modified from the `official github repo `_. """ def __init__(self, language_model, *args, **kwargs) -> None: self.language_model_cfg = language_model self._special_tokens = '. ' super().__init__(*args, **kwargs) def _init_layers(self) -> None: """Initialize layers except for backbone, neck and bbox_head.""" self.positional_encoding = SinePositionalEncoding( **self.positional_encoding) self.encoder = GroundingDinoTransformerEncoder(**self.encoder) self.decoder = GroundingDinoTransformerDecoder(**self.decoder) self.embed_dims = self.encoder.embed_dims self.query_embedding = nn.Embedding(self.num_queries, self.embed_dims) num_feats = self.positional_encoding.num_feats assert num_feats * 2 == self.embed_dims, \ f'embed_dims should be exactly 2 times of num_feats. ' \ f'Found {self.embed_dims} and {num_feats}.' self.level_embed = nn.Parameter( torch.Tensor(self.num_feature_levels, self.embed_dims)) self.memory_trans_fc = nn.Linear(self.embed_dims, self.embed_dims) self.memory_trans_norm = nn.LayerNorm(self.embed_dims) # text modules self.language_model = MODELS.build(self.language_model_cfg) self.text_feat_map = nn.Linear( self.language_model.language_backbone.body.language_dim, self.embed_dims, bias=True) def init_weights(self) -> None: """Initialize weights for Transformer and other components.""" super().init_weights() nn.init.constant_(self.text_feat_map.bias.data, 0) nn.init.xavier_uniform_(self.text_feat_map.weight.data) def get_tokens_and_prompts( self, original_caption: Union[str, list, tuple], custom_entities: bool = False) -> Tuple[dict, str, list]: """Get the tokens positive and prompts for the caption.""" if isinstance(original_caption, (list, tuple)) or custom_entities: if custom_entities and isinstance(original_caption, str): original_caption = original_caption.strip(self._special_tokens) original_caption = original_caption.split(self._special_tokens) original_caption = list( filter(lambda x: len(x) > 0, original_caption)) caption_string = '' tokens_positive = [] for idx, word in enumerate(original_caption): tokens_positive.append( [[len(caption_string), len(caption_string) + len(word)]]) caption_string += word caption_string += self._special_tokens # NOTE: Tokenizer in Grounding DINO is different from # that in GLIP. The tokenizer in GLIP will pad the # caption_string to max_length, while the tokenizer # in Grounding DINO will not. tokenized = self.language_model.tokenizer( [caption_string], padding='max_length' if self.language_model.pad_to_max else 'longest', return_tensors='pt') entities = original_caption else: if not original_caption.endswith('.'): original_caption = original_caption + self._special_tokens # NOTE: Tokenizer in Grounding DINO is different from # that in GLIP. The tokenizer in GLIP will pad the # caption_string to max_length, while the tokenizer # in Grounding DINO will not. tokenized = self.language_model.tokenizer( [original_caption], padding='max_length' if self.language_model.pad_to_max else 'longest', return_tensors='pt') tokens_positive, noun_phrases = run_ner(original_caption) entities = noun_phrases caption_string = original_caption return tokenized, caption_string, tokens_positive, entities def get_positive_map(self, tokenized, tokens_positive): positive_map = create_positive_map(tokenized, tokens_positive) positive_map_label_to_token = create_positive_map_label_to_token( positive_map, plus=1) return positive_map_label_to_token, positive_map def get_tokens_positive_and_prompts( self, original_caption: Union[str, list, tuple], custom_entities: bool = False) -> Tuple[dict, str, Tensor, list]: """Get the tokens positive and prompts for the caption. Args: original_caption (str): The original caption, e.g. 'bench . car .' custom_entities (bool, optional): Whether to use custom entities. If ``True``, the ``original_caption`` should be a list of strings, each of which is a word. Defaults to False. Returns: Tuple[dict, str, dict, str]: The dict is a mapping from each entity id, which is numbered from 1, to its positive token id. The str represents the prompts. """ tokenized, caption_string, tokens_positive, entities = \ self.get_tokens_and_prompts( original_caption, custom_entities) positive_map_label_to_token, positive_map = self.get_positive_map( tokenized, tokens_positive) return positive_map_label_to_token, caption_string, \ positive_map, entities def forward_transformer( self, img_feats: Tuple[Tensor], text_dict: Dict, batch_data_samples: OptSampleList = None, ) -> Dict: encoder_inputs_dict, decoder_inputs_dict = self.pre_transformer( img_feats, batch_data_samples) encoder_outputs_dict = self.forward_encoder( **encoder_inputs_dict, text_dict=text_dict) tmp_dec_in, head_inputs_dict = self.pre_decoder( **encoder_outputs_dict, batch_data_samples=batch_data_samples) decoder_inputs_dict.update(tmp_dec_in) decoder_outputs_dict = self.forward_decoder(**decoder_inputs_dict) head_inputs_dict.update(decoder_outputs_dict) return head_inputs_dict def forward_encoder(self, feat: Tensor, feat_mask: Tensor, feat_pos: Tensor, spatial_shapes: Tensor, level_start_index: Tensor, valid_ratios: Tensor, text_dict: Dict) -> Dict: text_token_mask = text_dict['text_token_mask'] memory, memory_text = self.encoder( query=feat, query_pos=feat_pos, key_padding_mask=feat_mask, # for self_attn spatial_shapes=spatial_shapes, level_start_index=level_start_index, valid_ratios=valid_ratios, # for text encoder memory_text=text_dict['embedded'], text_attention_mask=~text_token_mask, position_ids=text_dict['position_ids'], text_self_attention_masks=text_dict['masks']) encoder_outputs_dict = dict( memory=memory, memory_mask=feat_mask, spatial_shapes=spatial_shapes, memory_text=memory_text, text_token_mask=text_token_mask) return encoder_outputs_dict def pre_decoder( self, memory: Tensor, memory_mask: Tensor, spatial_shapes: Tensor, memory_text: Tensor, text_token_mask: Tensor, batch_data_samples: OptSampleList = None, ) -> Tuple[Dict]: bs, _, c = memory.shape output_memory, output_proposals = self.gen_encoder_output_proposals( memory, memory_mask, spatial_shapes) enc_outputs_class = self.bbox_head.cls_branches[ self.decoder.num_layers](output_memory, memory_text, text_token_mask) cls_out_features = self.bbox_head.cls_branches[ self.decoder.num_layers].max_text_len enc_outputs_coord_unact = self.bbox_head.reg_branches[ self.decoder.num_layers](output_memory) + output_proposals # NOTE The DINO selects top-k proposals according to scores of # multi-class classification, while DeformDETR, where the input # is `enc_outputs_class[..., 0]` selects according to scores of # binary classification. topk_indices = torch.topk( enc_outputs_class.max(-1)[0], k=self.num_queries, dim=1)[1] topk_score = torch.gather( enc_outputs_class, 1, topk_indices.unsqueeze(-1).repeat(1, 1, cls_out_features)) topk_coords_unact = torch.gather( enc_outputs_coord_unact, 1, topk_indices.unsqueeze(-1).repeat(1, 1, 4)) topk_coords = topk_coords_unact.sigmoid() topk_coords_unact = topk_coords_unact.detach() query = self.query_embedding.weight[:, None, :] query = query.repeat(1, bs, 1).transpose(0, 1) if self.training: dn_label_query, dn_bbox_query, dn_mask, dn_meta = \ self.dn_query_generator(batch_data_samples) query = torch.cat([dn_label_query, query], dim=1) reference_points = torch.cat([dn_bbox_query, topk_coords_unact], dim=1) else: reference_points = topk_coords_unact dn_mask, dn_meta = None, None reference_points = reference_points.sigmoid() decoder_inputs_dict = dict( query=query, memory=memory, reference_points=reference_points, dn_mask=dn_mask, memory_text=memory_text, text_attention_mask=~text_token_mask, ) # NOTE DINO calculates encoder losses on scores and coordinates # of selected top-k encoder queries, while DeformDETR is of all # encoder queries. head_inputs_dict = dict( enc_outputs_class=topk_score, enc_outputs_coord=topk_coords, dn_meta=dn_meta) if self.training else dict() # append text_feats to head_inputs_dict head_inputs_dict['memory_text'] = memory_text head_inputs_dict['text_token_mask'] = text_token_mask return decoder_inputs_dict, head_inputs_dict def loss(self, batch_inputs: Tensor, batch_data_samples: SampleList) -> Union[dict, list]: # TODO: Only open vocabulary tasks are supported for training now. text_prompts = [ data_samples.text for data_samples in batch_data_samples ] gt_labels = [ data_samples.gt_instances.labels for data_samples in batch_data_samples ] new_text_prompts = [] positive_maps = [] if len(set(text_prompts)) == 1: # All the text prompts are the same, # so there is no need to calculate them multiple times. tokenized, caption_string, tokens_positive, _ = \ self.get_tokens_and_prompts( text_prompts[0], True) new_text_prompts = [caption_string] * len(batch_inputs) for gt_label in gt_labels: new_tokens_positive = [ tokens_positive[label] for label in gt_label ] _, positive_map = self.get_positive_map( tokenized, new_tokens_positive) positive_maps.append(positive_map) else: for text_prompt, gt_label in zip(text_prompts, gt_labels): tokenized, caption_string, tokens_positive, _ = \ self.get_tokens_and_prompts( text_prompt, True) new_tokens_positive = [ tokens_positive[label] for label in gt_label ] _, positive_map = self.get_positive_map( tokenized, new_tokens_positive) positive_maps.append(positive_map) new_text_prompts.append(caption_string) text_dict = self.language_model(new_text_prompts) if self.text_feat_map is not None: text_dict['embedded'] = self.text_feat_map(text_dict['embedded']) for i, data_samples in enumerate(batch_data_samples): positive_map = positive_maps[i].to( batch_inputs.device).bool().float() text_token_mask = text_dict['text_token_mask'][i] data_samples.gt_instances.positive_maps = positive_map data_samples.gt_instances.text_token_mask = \ text_token_mask.unsqueeze(0).repeat( len(positive_map), 1) visual_features = self.extract_feat(batch_inputs) head_inputs_dict = self.forward_transformer(visual_features, text_dict, batch_data_samples) losses = self.bbox_head.loss( **head_inputs_dict, batch_data_samples=batch_data_samples) return losses def predict(self, batch_inputs, batch_data_samples, rescale: bool = True): text_prompts = [ data_samples.text for data_samples in batch_data_samples ] if 'custom_entities' in batch_data_samples[0]: # Assuming that the `custom_entities` flag # inside a batch is always the same. For single image inference custom_entities = batch_data_samples[0].custom_entities else: custom_entities = False if len(text_prompts) == 1: # All the text prompts are the same, # so there is no need to calculate them multiple times. _positive_maps_and_prompts = [ self.get_tokens_positive_and_prompts(text_prompts[0], custom_entities) ] * len(batch_inputs) else: _positive_maps_and_prompts = [ self.get_tokens_positive_and_prompts(text_prompt, custom_entities) for text_prompt in text_prompts ] token_positive_maps, text_prompts, _, entities = zip( *_positive_maps_and_prompts) # extract text feats text_dict = self.language_model(list(text_prompts)) # text feature map layer if self.text_feat_map is not None: text_dict['embedded'] = self.text_feat_map(text_dict['embedded']) for i, data_samples in enumerate(batch_data_samples): data_samples.token_positive_map = token_positive_maps[i] # image feature extraction visual_feats = self.extract_feat(batch_inputs) head_inputs_dict = self.forward_transformer(visual_feats, text_dict, batch_data_samples) results_list = self.bbox_head.predict( **head_inputs_dict, rescale=rescale, batch_data_samples=batch_data_samples) for data_sample, pred_instances, entity in zip(batch_data_samples, results_list, entities): if len(pred_instances) > 0: label_names = [] for labels in pred_instances.labels: if labels >= len(entity): warnings.warn( 'The unexpected output indicates an issue with ' 'named entity recognition. You can try ' 'setting custom_entities=True and running ' 'again to see if it helps.') label_names.append('unobject') else: label_names.append(entity[labels]) # for visualization pred_instances.label_names = label_names data_sample.pred_instances = pred_instances return batch_data_samples