# Copyright (c) OpenMMLab. All rights reserved. from argparse import ArgumentParser from io import BytesIO import matplotlib.pyplot as plt import mmcv import requests from mmseg.apis import inference_model, init_model def parse_args(): parser = ArgumentParser( description='Compare result of torchserve and pytorch,' 'and visualize them.') parser.add_argument('img', help='Image file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument('model_name', help='The model name in the server') parser.add_argument( '--inference-addr', default='127.0.0.1:8080', help='Address and port of the inference server') parser.add_argument( '--result-image', type=str, default=None, help='save server output in result-image') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') args = parser.parse_args() return args def main(args): url = 'http://' + args.inference_addr + '/predictions/' + args.model_name with open(args.img, 'rb') as image: tmp_res = requests.post(url, image) content = tmp_res.content if args.result_image: with open(args.result_image, 'wb') as out_image: out_image.write(content) plt.imshow(mmcv.imread(args.result_image, 'grayscale')) plt.show() else: plt.imshow(plt.imread(BytesIO(content))) plt.show() model = init_model(args.config, args.checkpoint, args.device) image = mmcv.imread(args.img) result = inference_model(model, image) plt.imshow(result[0]) plt.show() if __name__ == '__main__': args = parse_args() main(args)