Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Dict, List, Optional, Sequence, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
from mmpretrain.models.selfsup.mae import MAE, MAEViT | |
from mmpretrain.registry import MODELS | |
from mmpretrain.structures import DataSample | |
class MFFViT(MAEViT): | |
"""Vision Transformer for MFF Pretraining. | |
This class inherits all these functionalities from ``MAEViT``, and | |
add multi-level feature fusion to it. For more details, you can | |
refer to `Improving Pixel-based MIM by Reducing Wasted Modeling | |
Capability`. | |
Args: | |
arch (str | dict): Vision Transformer architecture | |
Default: 'b' | |
img_size (int | tuple): Input image size | |
patch_size (int | tuple): The patch size | |
out_indices (Sequence | int): Output from which stages. | |
Defaults to -1, means the last stage. | |
drop_rate (float): Probability of an element to be zeroed. | |
Defaults to 0. | |
drop_path_rate (float): stochastic depth rate. Defaults to 0. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to ``dict(type='LN')``. | |
final_norm (bool): Whether to add a additional layer to normalize | |
final feature map. Defaults to True. | |
out_type (str): The type of output features. Please choose from | |
- ``"cls_token"``: The class token tensor with shape (B, C). | |
- ``"featmap"``: The feature map tensor from the patch tokens | |
with shape (B, C, H, W). | |
- ``"avg_featmap"``: The global averaged feature map tensor | |
with shape (B, C). | |
- ``"raw"``: The raw feature tensor includes patch tokens and | |
class tokens with shape (B, L, C). | |
It only works without input mask. Defaults to ``"avg_featmap"``. | |
interpolate_mode (str): Select the interpolate mode for position | |
embeding vector resize. Defaults to "bicubic". | |
patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict. | |
layer_cfgs (Sequence | dict): Configs of each transformer layer in | |
encoder. Defaults to an empty dict. | |
mask_ratio (bool): The ratio of total number of patches to be masked. | |
Defaults to 0.75. | |
init_cfg (Union[List[dict], dict], optional): Initialization config | |
dict. Defaults to None. | |
""" | |
def __init__(self, | |
arch: Union[str, dict] = 'b', | |
img_size: int = 224, | |
patch_size: int = 16, | |
out_indices: Union[Sequence, int] = -1, | |
drop_rate: float = 0, | |
drop_path_rate: float = 0, | |
norm_cfg: dict = dict(type='LN', eps=1e-6), | |
final_norm: bool = True, | |
out_type: str = 'raw', | |
interpolate_mode: str = 'bicubic', | |
patch_cfg: dict = dict(), | |
layer_cfgs: dict = dict(), | |
mask_ratio: float = 0.75, | |
init_cfg: Optional[Union[List[dict], dict]] = None) -> None: | |
super().__init__( | |
arch=arch, | |
img_size=img_size, | |
patch_size=patch_size, | |
out_indices=out_indices, | |
drop_rate=drop_rate, | |
drop_path_rate=drop_path_rate, | |
norm_cfg=norm_cfg, | |
final_norm=final_norm, | |
out_type=out_type, | |
interpolate_mode=interpolate_mode, | |
patch_cfg=patch_cfg, | |
layer_cfgs=layer_cfgs, | |
mask_ratio=mask_ratio, | |
init_cfg=init_cfg) | |
proj_layers = [ | |
torch.nn.Linear(self.embed_dims, self.embed_dims) | |
for _ in range(len(self.out_indices) - 1) | |
] | |
self.proj_layers = torch.nn.ModuleList(proj_layers) | |
self.proj_weights = torch.nn.Parameter( | |
torch.ones(len(self.out_indices)).view(-1, 1, 1, 1)) | |
if len(self.out_indices) == 1: | |
self.proj_weights.requires_grad = False | |
def forward( | |
self, | |
x: torch.Tensor, | |
mask: Optional[bool] = True | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Generate features for masked images. | |
The function supports two kind of forward behaviors. If the ``mask`` is | |
``True``, the function will generate mask to masking some patches | |
randomly and get the hidden features for visible patches, which means | |
the function will be executed as masked imagemodeling pre-training; | |
if the ``mask`` is ``None`` or ``False``, the forward function will | |
call ``super().forward()``, which extract features from images without | |
mask. | |
Args: | |
x (torch.Tensor): Input images, which is of shape B x C x H x W. | |
mask (bool, optional): To indicate whether the forward function | |
generating ``mask`` or not. | |
Returns: | |
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Hidden features, | |
mask and the ids to restore original image. | |
- ``x`` (torch.Tensor): hidden features, which is of shape | |
B x (L * mask_ratio) x C. | |
- ``mask`` (torch.Tensor): mask used to mask image. | |
- ``ids_restore`` (torch.Tensor): ids to restore original image. | |
""" | |
if mask is None or False: | |
return super().forward(x) | |
else: | |
B = x.shape[0] | |
x = self.patch_embed(x)[0] | |
# add pos embed w/o cls token | |
x = x + self.pos_embed[:, 1:, :] | |
# masking: length -> length * mask_ratio | |
x, mask, ids_restore = self.random_masking(x, self.mask_ratio) | |
# append cls token | |
cls_token = self.cls_token + self.pos_embed[:, :1, :] | |
cls_tokens = cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
res = [] | |
for i, layer in enumerate(self.layers): | |
x = layer(x) | |
if i in self.out_indices: | |
if i != self.out_indices[-1]: | |
proj_x = self.proj_layers[self.out_indices.index(i)](x) | |
else: | |
proj_x = x | |
res.append(proj_x) | |
res = torch.stack(res) | |
proj_weights = F.softmax(self.proj_weights, dim=0) | |
res = res * proj_weights | |
res = res.sum(dim=0) | |
# Use final norm | |
x = self.norm1(res) | |
return (x, mask, ids_restore, proj_weights.view(-1)) | |
class MFF(MAE): | |
"""MFF. | |
Implementation of `Improving Pixel-based MIM by Reducing Wasted Modeling | |
Capability`. | |
""" | |
def loss(self, inputs: torch.Tensor, data_samples: List[DataSample], | |
**kwargs) -> Dict[str, torch.Tensor]: | |
"""The forward function in training. | |
Args: | |
inputs (torch.Tensor): The input images. | |
data_samples (List[DataSample]): All elements required | |
during the forward function. | |
Returns: | |
Dict[str, torch.Tensor]: A dictionary of loss components. | |
""" | |
# ids_restore: the same as that in original repo, which is used | |
# to recover the original order of tokens in decoder. | |
latent, mask, ids_restore, weights = self.backbone(inputs) | |
pred = self.neck(latent, ids_restore) | |
loss = self.head.loss(pred, inputs, mask) | |
weight_params = { | |
f'weight_{i}': weights[i] | |
for i in range(weights.size(0)) | |
} | |
losses = dict(loss=loss) | |
losses.update(weight_params) | |
return losses | |