Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import os.path as osp | |
from typing import Dict, List, Optional, Sequence | |
import torch | |
from mmengine.device import get_device | |
from mmengine.dist import get_rank, get_world_size, is_distributed | |
from mmengine.hooks import Hook | |
from mmengine.logging import MMLogger | |
from mmpretrain.registry import HOOKS | |
from mmpretrain.utils import get_ori_model | |
class SwAVHook(Hook): | |
"""Hook for SwAV. | |
This hook builds the queue in SwAV according to ``epoch_queue_starts``. | |
The queue will be saved in ``runner.work_dir`` or loaded at start epoch | |
if the path folder has queues saved before. | |
Args: | |
batch_size (int): the batch size per GPU for computing. | |
epoch_queue_starts (int, optional): from this epoch, starts to use the | |
queue. Defaults to 15. | |
crops_for_assign (list[int], optional): list of crops id used for | |
computing assignments. Defaults to [0, 1]. | |
feat_dim (int, optional): feature dimension of output vector. | |
Defaults to 128. | |
queue_length (int, optional): length of the queue (0 for no queue). | |
Defaults to 0. | |
interval (int, optional): the interval to save the queue. | |
Defaults to 1. | |
frozen_layers_cfg (dict, optional): Dict to config frozen layers. | |
The key-value pair is layer name and its frozen iters. If frozen, | |
the layers don't need gradient. Defaults to dict(). | |
""" | |
def __init__( | |
self, | |
batch_size: int, | |
epoch_queue_starts: Optional[int] = 15, | |
crops_for_assign: Optional[List[int]] = [0, 1], | |
feat_dim: Optional[int] = 128, | |
queue_length: Optional[int] = 0, | |
interval: Optional[int] = 1, | |
frozen_layers_cfg: Optional[Dict] = dict() | |
) -> None: | |
self.batch_size = batch_size * get_world_size() | |
self.epoch_queue_starts = epoch_queue_starts | |
self.crops_for_assign = crops_for_assign | |
self.feat_dim = feat_dim | |
self.queue_length = queue_length | |
self.interval = interval | |
self.frozen_layers_cfg = frozen_layers_cfg | |
self.requires_grad = True | |
self.queue = None | |
def before_run(self, runner) -> None: | |
"""Check whether the queues exist locally or not.""" | |
if is_distributed(): | |
self.queue_path = osp.join(runner.work_dir, | |
'queue' + str(get_rank()) + '.pth') | |
else: | |
self.queue_path = osp.join(runner.work_dir, 'queue.pth') | |
# load the queues if queues exist locally | |
if osp.isfile(self.queue_path): | |
self.queue = torch.load(self.queue_path)['queue'] | |
get_ori_model(runner.model).head.loss_module.queue = self.queue | |
MMLogger.get_current_instance().info( | |
f'Load queue from file: {self.queue_path}') | |
# the queue needs to be divisible by the batch size | |
self.queue_length -= self.queue_length % self.batch_size | |
def before_train_iter(self, | |
runner, | |
batch_idx: int, | |
data_batch: Optional[Sequence[dict]] = None) -> None: | |
"""Freeze layers before specific iters according to the config.""" | |
for layer, frozen_iters in self.frozen_layers_cfg.items(): | |
if runner.iter < frozen_iters and self.requires_grad: | |
self.requires_grad = False | |
for name, p in get_ori_model(runner.model).named_parameters(): | |
if layer in name: | |
p.requires_grad = False | |
elif runner.iter >= frozen_iters and not self.requires_grad: | |
self.requires_grad = True | |
for name, p in get_ori_model(runner.model).named_parameters(): | |
if layer in name: | |
p.requires_grad = True | |
def before_train_epoch(self, runner) -> None: | |
"""Check the queues' state.""" | |
# optionally starts a queue | |
if self.queue_length > 0 \ | |
and runner.epoch >= self.epoch_queue_starts \ | |
and self.queue is None: | |
self.queue = torch.zeros( | |
len(self.crops_for_assign), | |
self.queue_length // runner.world_size, | |
self.feat_dim, | |
device=get_device(), | |
) | |
# set the boolean type of use_the_queue | |
get_ori_model(runner.model).head.loss_module.queue = self.queue | |
get_ori_model(runner.model).head.loss_module.use_queue = False | |
def after_train_epoch(self, runner) -> None: | |
"""Save the queues locally.""" | |
self.queue = get_ori_model(runner.model).head.loss_module.queue | |
if self.queue is not None and self.every_n_epochs( | |
runner, self.interval): | |
torch.save({'queue': self.queue}, self.queue_path) | |