KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
import inspect
import math
import numbers
import re
import string
from enum import EnumMeta
from numbers import Number
from typing import Dict, List, Optional, Sequence, Tuple, Union
import mmcv
import mmengine
import numpy as np
import torch
import torchvision
import torchvision.transforms.functional as F
from mmcv.transforms import BaseTransform
from mmcv.transforms.utils import cache_randomness
from PIL import Image
from torchvision import transforms
from torchvision.transforms.transforms import InterpolationMode
from mmpretrain.registry import TRANSFORMS
try:
import albumentations
except ImportError:
albumentations = None
def _str_to_torch_dtype(t: str):
"""mapping str format dtype to torch.dtype."""
import torch # noqa: F401,F403
return eval(f'torch.{t}')
def _interpolation_modes_from_str(t: str):
"""mapping str format to Interpolation."""
t = t.lower()
inverse_modes_mapping = {
'nearest': InterpolationMode.NEAREST,
'bilinear': InterpolationMode.BILINEAR,
'bicubic': InterpolationMode.BICUBIC,
'box': InterpolationMode.BOX,
'hammimg': InterpolationMode.HAMMING,
'lanczos': InterpolationMode.LANCZOS,
}
return inverse_modes_mapping[t]
class TorchVisonTransformWrapper:
def __init__(self, transform, *args, **kwargs):
if 'interpolation' in kwargs and isinstance(kwargs['interpolation'],
str):
kwargs['interpolation'] = _interpolation_modes_from_str(
kwargs['interpolation'])
if 'dtype' in kwargs and isinstance(kwargs['dtype'], str):
kwargs['dtype'] = _str_to_torch_dtype(kwargs['dtype'])
self.t = transform(*args, **kwargs)
def __call__(self, results):
results['img'] = self.t(results['img'])
return results
def __repr__(self) -> str:
return f'TorchVision{repr(self.t)}'
def register_vision_transforms() -> List[str]:
"""Register transforms in ``torchvision.transforms`` to the ``TRANSFORMS``
registry.
Returns:
List[str]: A list of registered transforms' name.
"""
vision_transforms = []
for module_name in dir(torchvision.transforms):
if not re.match('[A-Z]', module_name):
# must startswith a capital letter
continue
_transform = getattr(torchvision.transforms, module_name)
if inspect.isclass(_transform) and callable(
_transform) and not isinstance(_transform, (EnumMeta)):
from functools import partial
TRANSFORMS.register_module(
module=partial(
TorchVisonTransformWrapper, transform=_transform),
name=f'torchvision/{module_name}')
vision_transforms.append(f'torchvision/{module_name}')
return vision_transforms
# register all the transforms in torchvision by using a transform wrapper
VISION_TRANSFORMS = register_vision_transforms()
@TRANSFORMS.register_module()
class RandomCrop(BaseTransform):
"""Crop the given Image at a random location.
**Required Keys:**
- img
**Modified Keys:**
- img
- img_shape
Args:
crop_size (int | Sequence): Desired output size of the crop. If
crop_size is an int instead of sequence like (h, w), a square crop
(crop_size, crop_size) is made.
padding (int | Sequence, optional): Optional padding on each border
of the image. If a sequence of length 4 is provided, it is used to
pad left, top, right, bottom borders respectively. If a sequence
of length 2 is provided, it is used to pad left/right, top/bottom
borders, respectively. Default: None, which means no padding.
pad_if_needed (bool): It will pad the image if smaller than the
desired size to avoid raising an exception. Since cropping is done
after padding, the padding seems to be done at a random offset.
Default: False.
pad_val (Number | Sequence[Number]): Pixel pad_val value for constant
fill. If a tuple of length 3, it is used to pad_val R, G, B
channels respectively. Default: 0.
padding_mode (str): Type of padding. Defaults to "constant". Should
be one of the following:
- ``constant``: Pads with a constant value, this value is specified
with pad_val.
- ``edge``: pads with the last value at the edge of the image.
- ``reflect``: Pads with reflection of image without repeating the
last value on the edge. For example, padding [1, 2, 3, 4]
with 2 elements on both sides in reflect mode will result
in [3, 2, 1, 2, 3, 4, 3, 2].
- ``symmetric``: Pads with reflection of image repeating the last
value on the edge. For example, padding [1, 2, 3, 4] with
2 elements on both sides in symmetric mode will result in
[2, 1, 1, 2, 3, 4, 4, 3].
"""
def __init__(self,
crop_size: Union[Sequence, int],
padding: Optional[Union[Sequence, int]] = None,
pad_if_needed: bool = False,
pad_val: Union[Number, Sequence[Number]] = 0,
padding_mode: str = 'constant'):
if isinstance(crop_size, Sequence):
assert len(crop_size) == 2
assert crop_size[0] > 0 and crop_size[1] > 0
self.crop_size = crop_size
else:
assert crop_size > 0
self.crop_size = (crop_size, crop_size)
# check padding mode
assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
self.padding = padding
self.pad_if_needed = pad_if_needed
self.pad_val = pad_val
self.padding_mode = padding_mode
@cache_randomness
def rand_crop_params(self, img: np.ndarray):
"""Get parameters for ``crop`` for a random crop.
Args:
img (ndarray): Image to be cropped.
Returns:
tuple: Params (offset_h, offset_w, target_h, target_w) to be
passed to ``crop`` for random crop.
"""
h, w = img.shape[:2]
target_h, target_w = self.crop_size
if w == target_w and h == target_h:
return 0, 0, h, w
elif w < target_w or h < target_h:
target_w = min(w, target_w)
target_h = min(h, target_h)
offset_h = np.random.randint(0, h - target_h + 1)
offset_w = np.random.randint(0, w - target_w + 1)
return offset_h, offset_w, target_h, target_w
def transform(self, results: dict) -> dict:
"""Transform function to randomly crop images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Randomly cropped results, 'img_shape'
key in result dict is updated according to crop size.
"""
img = results['img']
if self.padding is not None:
img = mmcv.impad(img, padding=self.padding, pad_val=self.pad_val)
# pad img if needed
if self.pad_if_needed:
h_pad = math.ceil(max(0, self.crop_size[0] - img.shape[0]) / 2)
w_pad = math.ceil(max(0, self.crop_size[1] - img.shape[1]) / 2)
img = mmcv.impad(
img,
padding=(w_pad, h_pad, w_pad, h_pad),
pad_val=self.pad_val,
padding_mode=self.padding_mode)
offset_h, offset_w, target_h, target_w = self.rand_crop_params(img)
img = mmcv.imcrop(
img,
np.array([
offset_w,
offset_h,
offset_w + target_w - 1,
offset_h + target_h - 1,
]))
results['img'] = img
results['img_shape'] = img.shape
return results
def __repr__(self):
"""Print the basic information of the transform.
Returns:
str: Formatted string.
"""
repr_str = self.__class__.__name__ + f'(crop_size={self.crop_size}'
repr_str += f', padding={self.padding}'
repr_str += f', pad_if_needed={self.pad_if_needed}'
repr_str += f', pad_val={self.pad_val}'
repr_str += f', padding_mode={self.padding_mode})'
return repr_str
@TRANSFORMS.register_module()
class RandomResizedCrop(BaseTransform):
"""Crop the given image to random scale and aspect ratio.
A crop of random size (default: of 0.08 to 1.0) of the original size and a
random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio
is made. This crop is finally resized to given size.
**Required Keys:**
- img
**Modified Keys:**
- img
- img_shape
Args:
scale (sequence | int): Desired output scale of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
crop_ratio_range (tuple): Range of the random size of the cropped
image compared to the original image. Defaults to (0.08, 1.0).
aspect_ratio_range (tuple): Range of the random aspect ratio of the
cropped image compared to the original image.
Defaults to (3. / 4., 4. / 3.).
max_attempts (int): Maximum number of attempts before falling back to
Central Crop. Defaults to 10.
interpolation (str): Interpolation method, accepted values are
'nearest', 'bilinear', 'bicubic', 'area', 'lanczos'. Defaults to
'bilinear'.
backend (str): The image resize backend type, accepted values are
'cv2' and 'pillow'. Defaults to 'cv2'.
"""
def __init__(self,
scale: Union[Sequence, int],
crop_ratio_range: Tuple[float, float] = (0.08, 1.0),
aspect_ratio_range: Tuple[float, float] = (3. / 4., 4. / 3.),
max_attempts: int = 10,
interpolation: str = 'bilinear',
backend: str = 'cv2') -> None:
if isinstance(scale, Sequence):
assert len(scale) == 2
assert scale[0] > 0 and scale[1] > 0
self.scale = scale
else:
assert scale > 0
self.scale = (scale, scale)
if (crop_ratio_range[0] > crop_ratio_range[1]) or (
aspect_ratio_range[0] > aspect_ratio_range[1]):
raise ValueError(
'range should be of kind (min, max). '
f'But received crop_ratio_range {crop_ratio_range} '
f'and aspect_ratio_range {aspect_ratio_range}.')
assert isinstance(max_attempts, int) and max_attempts >= 0, \
'max_attempts mush be int and no less than 0.'
assert interpolation in ('nearest', 'bilinear', 'bicubic', 'area',
'lanczos')
self.crop_ratio_range = crop_ratio_range
self.aspect_ratio_range = aspect_ratio_range
self.max_attempts = max_attempts
self.interpolation = interpolation
self.backend = backend
@cache_randomness
def rand_crop_params(self, img: np.ndarray) -> Tuple[int, int, int, int]:
"""Get parameters for ``crop`` for a random sized crop.
Args:
img (ndarray): Image to be cropped.
Returns:
tuple: Params (offset_h, offset_w, target_h, target_w) to be
passed to `crop` for a random sized crop.
"""
h, w = img.shape[:2]
area = h * w
for _ in range(self.max_attempts):
target_area = np.random.uniform(*self.crop_ratio_range) * area
log_ratio = (math.log(self.aspect_ratio_range[0]),
math.log(self.aspect_ratio_range[1]))
aspect_ratio = math.exp(np.random.uniform(*log_ratio))
target_w = int(round(math.sqrt(target_area * aspect_ratio)))
target_h = int(round(math.sqrt(target_area / aspect_ratio)))
if 0 < target_w <= w and 0 < target_h <= h:
offset_h = np.random.randint(0, h - target_h + 1)
offset_w = np.random.randint(0, w - target_w + 1)
return offset_h, offset_w, target_h, target_w
# Fallback to central crop
in_ratio = float(w) / float(h)
if in_ratio < min(self.aspect_ratio_range):
target_w = w
target_h = int(round(target_w / min(self.aspect_ratio_range)))
elif in_ratio > max(self.aspect_ratio_range):
target_h = h
target_w = int(round(target_h * max(self.aspect_ratio_range)))
else: # whole image
target_w = w
target_h = h
offset_h = (h - target_h) // 2
offset_w = (w - target_w) // 2
return offset_h, offset_w, target_h, target_w
def transform(self, results: dict) -> dict:
"""Transform function to randomly resized crop images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Randomly resized cropped results, 'img_shape'
key in result dict is updated according to crop size.
"""
img = results['img']
offset_h, offset_w, target_h, target_w = self.rand_crop_params(img)
img = mmcv.imcrop(
img,
bboxes=np.array([
offset_w, offset_h, offset_w + target_w - 1,
offset_h + target_h - 1
]))
img = mmcv.imresize(
img,
tuple(self.scale[::-1]),
interpolation=self.interpolation,
backend=self.backend)
results['img'] = img
results['img_shape'] = img.shape
return results
def __repr__(self):
"""Print the basic information of the transform.
Returns:
str: Formatted string.
"""
repr_str = self.__class__.__name__ + f'(scale={self.scale}'
repr_str += ', crop_ratio_range='
repr_str += f'{tuple(round(s, 4) for s in self.crop_ratio_range)}'
repr_str += ', aspect_ratio_range='
repr_str += f'{tuple(round(r, 4) for r in self.aspect_ratio_range)}'
repr_str += f', max_attempts={self.max_attempts}'
repr_str += f', interpolation={self.interpolation}'
repr_str += f', backend={self.backend})'
return repr_str
@TRANSFORMS.register_module()
class EfficientNetRandomCrop(RandomResizedCrop):
"""EfficientNet style RandomResizedCrop.
**Required Keys:**
- img
**Modified Keys:**
- img
- img_shape
Args:
scale (int): Desired output scale of the crop. Only int size is
accepted, a square crop (size, size) is made.
min_covered (Number): Minimum ratio of the cropped area to the original
area. Defaults to 0.1.
crop_padding (int): The crop padding parameter in efficientnet style
center crop. Defaults to 32.
crop_ratio_range (tuple): Range of the random size of the cropped
image compared to the original image. Defaults to (0.08, 1.0).
aspect_ratio_range (tuple): Range of the random aspect ratio of the
cropped image compared to the original image.
Defaults to (3. / 4., 4. / 3.).
max_attempts (int): Maximum number of attempts before falling back to
Central Crop. Defaults to 10.
interpolation (str): Interpolation method, accepted values are
'nearest', 'bilinear', 'bicubic', 'area', 'lanczos'. Defaults to
'bicubic'.
backend (str): The image resize backend type, accepted values are
'cv2' and 'pillow'. Defaults to 'cv2'.
"""
def __init__(self,
scale: int,
min_covered: float = 0.1,
crop_padding: int = 32,
interpolation: str = 'bicubic',
**kwarg):
assert isinstance(scale, int)
super().__init__(scale, interpolation=interpolation, **kwarg)
assert min_covered >= 0, 'min_covered should be no less than 0.'
assert crop_padding >= 0, 'crop_padding should be no less than 0.'
self.min_covered = min_covered
self.crop_padding = crop_padding
# https://github.com/kakaobrain/fast-autoaugment/blob/master/FastAutoAugment/data.py # noqa
@cache_randomness
def rand_crop_params(self, img: np.ndarray) -> Tuple[int, int, int, int]:
"""Get parameters for ``crop`` for a random sized crop.
Args:
img (ndarray): Image to be cropped.
Returns:
tuple: Params (offset_h, offset_w, target_h, target_w) to be
passed to `crop` for a random sized crop.
"""
h, w = img.shape[:2]
area = h * w
min_target_area = self.crop_ratio_range[0] * area
max_target_area = self.crop_ratio_range[1] * area
for _ in range(self.max_attempts):
aspect_ratio = np.random.uniform(*self.aspect_ratio_range)
min_target_h = int(
round(math.sqrt(min_target_area / aspect_ratio)))
max_target_h = int(
round(math.sqrt(max_target_area / aspect_ratio)))
if max_target_h * aspect_ratio > w:
max_target_h = int((w + 0.5 - 1e-7) / aspect_ratio)
if max_target_h * aspect_ratio > w:
max_target_h -= 1
max_target_h = min(max_target_h, h)
min_target_h = min(max_target_h, min_target_h)
# slightly differs from tf implementation
target_h = int(
round(np.random.uniform(min_target_h, max_target_h)))
target_w = int(round(target_h * aspect_ratio))
target_area = target_h * target_w
# slight differs from tf. In tf, if target_area > max_target_area,
# area will be recalculated
if (target_area < min_target_area or target_area > max_target_area
or target_w > w or target_h > h
or target_area < self.min_covered * area):
continue
offset_h = np.random.randint(0, h - target_h + 1)
offset_w = np.random.randint(0, w - target_w + 1)
return offset_h, offset_w, target_h, target_w
# Fallback to central crop
img_short = min(h, w)
crop_size = self.scale[0] / (self.scale[0] +
self.crop_padding) * img_short
offset_h = max(0, int(round((h - crop_size) / 2.)))
offset_w = max(0, int(round((w - crop_size) / 2.)))
return offset_h, offset_w, crop_size, crop_size
def __repr__(self):
"""Print the basic information of the transform.
Returns:
str: Formatted string.
"""
repr_str = super().__repr__()[:-1]
repr_str += f', min_covered={self.min_covered}'
repr_str += f', crop_padding={self.crop_padding})'
return repr_str
@TRANSFORMS.register_module()
class RandomErasing(BaseTransform):
"""Randomly selects a rectangle region in an image and erase pixels.
**Required Keys:**
- img
**Modified Keys:**
- img
Args:
erase_prob (float): Probability that image will be randomly erased.
Default: 0.5
min_area_ratio (float): Minimum erased area / input image area
Default: 0.02
max_area_ratio (float): Maximum erased area / input image area
Default: 0.4
aspect_range (sequence | float): Aspect ratio range of erased area.
if float, it will be converted to (aspect_ratio, 1/aspect_ratio)
Default: (3/10, 10/3)
mode (str): Fill method in erased area, can be:
- const (default): All pixels are assign with the same value.
- rand: each pixel is assigned with a random value in [0, 255]
fill_color (sequence | Number): Base color filled in erased area.
Defaults to (128, 128, 128).
fill_std (sequence | Number, optional): If set and ``mode`` is 'rand',
fill erased area with random color from normal distribution
(mean=fill_color, std=fill_std); If not set, fill erased area with
random color from uniform distribution (0~255). Defaults to None.
Note:
See `Random Erasing Data Augmentation
<https://arxiv.org/pdf/1708.04896.pdf>`_
This paper provided 4 modes: RE-R, RE-M, RE-0, RE-255, and use RE-M as
default. The config of these 4 modes are:
- RE-R: RandomErasing(mode='rand')
- RE-M: RandomErasing(mode='const', fill_color=(123.67, 116.3, 103.5))
- RE-0: RandomErasing(mode='const', fill_color=0)
- RE-255: RandomErasing(mode='const', fill_color=255)
"""
def __init__(self,
erase_prob=0.5,
min_area_ratio=0.02,
max_area_ratio=0.4,
aspect_range=(3 / 10, 10 / 3),
mode='const',
fill_color=(128, 128, 128),
fill_std=None):
assert isinstance(erase_prob, float) and 0. <= erase_prob <= 1.
assert isinstance(min_area_ratio, float) and 0. <= min_area_ratio <= 1.
assert isinstance(max_area_ratio, float) and 0. <= max_area_ratio <= 1.
assert min_area_ratio <= max_area_ratio, \
'min_area_ratio should be smaller than max_area_ratio'
if isinstance(aspect_range, float):
aspect_range = min(aspect_range, 1 / aspect_range)
aspect_range = (aspect_range, 1 / aspect_range)
assert isinstance(aspect_range, Sequence) and len(aspect_range) == 2 \
and all(isinstance(x, float) for x in aspect_range), \
'aspect_range should be a float or Sequence with two float.'
assert all(x > 0 for x in aspect_range), \
'aspect_range should be positive.'
assert aspect_range[0] <= aspect_range[1], \
'In aspect_range (min, max), min should be smaller than max.'
assert mode in ['const', 'rand'], \
'Please select `mode` from ["const", "rand"].'
if isinstance(fill_color, Number):
fill_color = [fill_color] * 3
assert isinstance(fill_color, Sequence) and len(fill_color) == 3 \
and all(isinstance(x, Number) for x in fill_color), \
'fill_color should be a float or Sequence with three int.'
if fill_std is not None:
if isinstance(fill_std, Number):
fill_std = [fill_std] * 3
assert isinstance(fill_std, Sequence) and len(fill_std) == 3 \
and all(isinstance(x, Number) for x in fill_std), \
'fill_std should be a float or Sequence with three int.'
self.erase_prob = erase_prob
self.min_area_ratio = min_area_ratio
self.max_area_ratio = max_area_ratio
self.aspect_range = aspect_range
self.mode = mode
self.fill_color = fill_color
self.fill_std = fill_std
def _fill_pixels(self, img, top, left, h, w):
"""Fill pixels to the patch of image."""
if self.mode == 'const':
patch = np.empty((h, w, 3), dtype=np.uint8)
patch[:, :] = np.array(self.fill_color, dtype=np.uint8)
elif self.fill_std is None:
# Uniform distribution
patch = np.random.uniform(0, 256, (h, w, 3)).astype(np.uint8)
else:
# Normal distribution
patch = np.random.normal(self.fill_color, self.fill_std, (h, w, 3))
patch = np.clip(patch.astype(np.int32), 0, 255).astype(np.uint8)
img[top:top + h, left:left + w] = patch
return img
@cache_randomness
def random_disable(self):
"""Randomly disable the transform."""
return np.random.rand() > self.erase_prob
@cache_randomness
def random_patch(self, img_h, img_w):
"""Randomly generate patch the erase."""
# convert the aspect ratio to log space to equally handle width and
# height.
log_aspect_range = np.log(
np.array(self.aspect_range, dtype=np.float32))
aspect_ratio = np.exp(np.random.uniform(*log_aspect_range))
area = img_h * img_w
area *= np.random.uniform(self.min_area_ratio, self.max_area_ratio)
h = min(int(round(np.sqrt(area * aspect_ratio))), img_h)
w = min(int(round(np.sqrt(area / aspect_ratio))), img_w)
top = np.random.randint(0, img_h - h) if img_h > h else 0
left = np.random.randint(0, img_w - w) if img_w > w else 0
return top, left, h, w
def transform(self, results):
"""
Args:
results (dict): Results dict from pipeline
Returns:
dict: Results after the transformation.
"""
if self.random_disable():
return results
img = results['img']
img_h, img_w = img.shape[:2]
img = self._fill_pixels(img, *self.random_patch(img_h, img_w))
results['img'] = img
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(erase_prob={self.erase_prob}, '
repr_str += f'min_area_ratio={self.min_area_ratio}, '
repr_str += f'max_area_ratio={self.max_area_ratio}, '
repr_str += f'aspect_range={self.aspect_range}, '
repr_str += f'mode={self.mode}, '
repr_str += f'fill_color={self.fill_color}, '
repr_str += f'fill_std={self.fill_std})'
return repr_str
@TRANSFORMS.register_module()
class EfficientNetCenterCrop(BaseTransform):
r"""EfficientNet style center crop.
**Required Keys:**
- img
**Modified Keys:**
- img
- img_shape
Args:
crop_size (int): Expected size after cropping with the format
of (h, w).
crop_padding (int): The crop padding parameter in efficientnet style
center crop. Defaults to 32.
interpolation (str): Interpolation method, accepted values are
'nearest', 'bilinear', 'bicubic', 'area', 'lanczos'. Only valid if
``efficientnet_style`` is True. Defaults to 'bicubic'.
backend (str): The image resize backend type, accepted values are
`cv2` and `pillow`. Only valid if efficientnet style is True.
Defaults to `cv2`.
Notes:
- If the image is smaller than the crop size, return the original
image.
- The pipeline will be to first
to perform the center crop with the ``crop_size_`` as:
.. math::
\text{crop_size_} = \frac{\text{crop_size}}{\text{crop_size} +
\text{crop_padding}} \times \text{short_edge}
And then the pipeline resizes the img to the input crop size.
"""
def __init__(self,
crop_size: int,
crop_padding: int = 32,
interpolation: str = 'bicubic',
backend: str = 'cv2'):
assert isinstance(crop_size, int)
assert crop_size > 0
assert crop_padding >= 0
assert interpolation in ('nearest', 'bilinear', 'bicubic', 'area',
'lanczos')
self.crop_size = crop_size
self.crop_padding = crop_padding
self.interpolation = interpolation
self.backend = backend
def transform(self, results: dict) -> dict:
"""Transform function to randomly resized crop images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: EfficientNet style center cropped results, 'img_shape'
key in result dict is updated according to crop size.
"""
img = results['img']
h, w = img.shape[:2]
# https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/preprocessing.py#L118 # noqa
img_short = min(h, w)
crop_size = self.crop_size / (self.crop_size +
self.crop_padding) * img_short
offset_h = max(0, int(round((h - crop_size) / 2.)))
offset_w = max(0, int(round((w - crop_size) / 2.)))
# crop the image
img = mmcv.imcrop(
img,
bboxes=np.array([
offset_w, offset_h, offset_w + crop_size - 1,
offset_h + crop_size - 1
]))
# resize image
img = mmcv.imresize(
img, (self.crop_size, self.crop_size),
interpolation=self.interpolation,
backend=self.backend)
results['img'] = img
results['img_shape'] = img.shape
return results
def __repr__(self):
"""Print the basic information of the transform.
Returns:
str: Formatted string.
"""
repr_str = self.__class__.__name__ + f'(crop_size={self.crop_size}'
repr_str += f', crop_padding={self.crop_padding}'
repr_str += f', interpolation={self.interpolation}'
repr_str += f', backend={self.backend})'
return repr_str
@TRANSFORMS.register_module()
class ResizeEdge(BaseTransform):
"""Resize images along the specified edge.
**Required Keys:**
- img
**Modified Keys:**
- img
- img_shape
**Added Keys:**
- scale
- scale_factor
Args:
scale (int): The edge scale to resizing.
edge (str): The edge to resize. Defaults to 'short'.
backend (str): Image resize backend, choices are 'cv2' and 'pillow'.
These two backends generates slightly different results.
Defaults to 'cv2'.
interpolation (str): Interpolation method, accepted values are
"nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
backend, "nearest", "bilinear" for 'pillow' backend.
Defaults to 'bilinear'.
"""
def __init__(self,
scale: int,
edge: str = 'short',
backend: str = 'cv2',
interpolation: str = 'bilinear') -> None:
allow_edges = ['short', 'long', 'width', 'height']
assert edge in allow_edges, \
f'Invalid edge "{edge}", please specify from {allow_edges}.'
self.edge = edge
self.scale = scale
self.backend = backend
self.interpolation = interpolation
def _resize_img(self, results: dict) -> None:
"""Resize images with ``results['scale']``."""
img, w_scale, h_scale = mmcv.imresize(
results['img'],
results['scale'],
interpolation=self.interpolation,
return_scale=True,
backend=self.backend)
results['img'] = img
results['img_shape'] = img.shape[:2]
results['scale'] = img.shape[:2][::-1]
results['scale_factor'] = (w_scale, h_scale)
def transform(self, results: Dict) -> Dict:
"""Transform function to resize images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Resized results, 'img', 'scale', 'scale_factor',
'img_shape' keys are updated in result dict.
"""
assert 'img' in results, 'No `img` field in the input.'
h, w = results['img'].shape[:2]
if any([
# conditions to resize the width
self.edge == 'short' and w < h,
self.edge == 'long' and w > h,
self.edge == 'width',
]):
width = self.scale
height = int(self.scale * h / w)
else:
height = self.scale
width = int(self.scale * w / h)
results['scale'] = (width, height)
self._resize_img(results)
return results
def __repr__(self):
"""Print the basic information of the transform.
Returns:
str: Formatted string.
"""
repr_str = self.__class__.__name__
repr_str += f'(scale={self.scale}, '
repr_str += f'edge={self.edge}, '
repr_str += f'backend={self.backend}, '
repr_str += f'interpolation={self.interpolation})'
return repr_str
@TRANSFORMS.register_module()
class ColorJitter(BaseTransform):
"""Randomly change the brightness, contrast and saturation of an image.
Modified from
https://github.com/pytorch/vision/blob/main/torchvision/transforms/transforms.py
Licensed under the BSD 3-Clause License.
**Required Keys:**
- img
**Modified Keys:**
- img
Args:
brightness (float | Sequence[float] (min, max)): How much to jitter
brightness. brightness_factor is chosen uniformly from
``[max(0, 1 - brightness), 1 + brightness]`` or the given
``[min, max]``. Should be non negative numbers. Defaults to 0.
contrast (float | Sequence[float] (min, max)): How much to jitter
contrast. contrast_factor is chosen uniformly from
``[max(0, 1 - contrast), 1 + contrast]`` or the given
``[min, max]``. Should be non negative numbers. Defaults to 0.
saturation (float | Sequence[float] (min, max)): How much to jitter
saturation. saturation_factor is chosen uniformly from
``[max(0, 1 - saturation), 1 + saturation]`` or the given
``[min, max]``. Should be non negative numbers. Defaults to 0.
hue (float | Sequence[float] (min, max)): How much to jitter hue.
hue_factor is chosen uniformly from ``[-hue, hue]`` (0 <= hue
<= 0.5) or the given ``[min, max]`` (-0.5 <= min <= max <= 0.5).
Defaults to 0.
backend (str): The backend to operate the image. Defaults to 'pillow'
"""
def __init__(self,
brightness: Union[float, Sequence[float]] = 0.,
contrast: Union[float, Sequence[float]] = 0.,
saturation: Union[float, Sequence[float]] = 0.,
hue: Union[float, Sequence[float]] = 0.,
backend='pillow'):
self.brightness = self._set_range(brightness, 'brightness')
self.contrast = self._set_range(contrast, 'contrast')
self.saturation = self._set_range(saturation, 'saturation')
self.hue = self._set_range(hue, 'hue', center=0, bound=(-0.5, 0.5))
self.backend = backend
def _set_range(self, value, name, center=1, bound=(0, float('inf'))):
"""Set the range of magnitudes."""
if isinstance(value, numbers.Number):
if value < 0:
raise ValueError(
f'If {name} is a single number, it must be non negative.')
value = (center - float(value), center + float(value))
if isinstance(value, (tuple, list)) and len(value) == 2:
if not bound[0] <= value[0] <= value[1] <= bound[1]:
value = np.clip(value, bound[0], bound[1])
from mmengine.logging import MMLogger
logger = MMLogger.get_current_instance()
logger.warning(f'ColorJitter {name} values exceed the bound '
f'{bound}, clipped to the bound.')
else:
raise TypeError(f'{name} should be a single number '
'or a list/tuple with length 2.')
# if value is 0 or (1., 1.) for brightness/contrast/saturation
# or (0., 0.) for hue, do nothing
if value[0] == value[1] == center:
value = None
else:
value = tuple(value)
return value
@cache_randomness
def _rand_params(self):
"""Get random parameters including magnitudes and indices of
transforms."""
trans_inds = np.random.permutation(4)
b, c, s, h = (None, ) * 4
if self.brightness is not None:
b = np.random.uniform(self.brightness[0], self.brightness[1])
if self.contrast is not None:
c = np.random.uniform(self.contrast[0], self.contrast[1])
if self.saturation is not None:
s = np.random.uniform(self.saturation[0], self.saturation[1])
if self.hue is not None:
h = np.random.uniform(self.hue[0], self.hue[1])
return trans_inds, b, c, s, h
def transform(self, results: Dict) -> Dict:
"""Transform function to resize images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: ColorJitter results, 'img' key is updated in result dict.
"""
img = results['img']
trans_inds, brightness, contrast, saturation, hue = self._rand_params()
for index in trans_inds:
if index == 0 and brightness is not None:
img = mmcv.adjust_brightness(
img, brightness, backend=self.backend)
elif index == 1 and contrast is not None:
img = mmcv.adjust_contrast(img, contrast, backend=self.backend)
elif index == 2 and saturation is not None:
img = mmcv.adjust_color(
img, alpha=saturation, backend=self.backend)
elif index == 3 and hue is not None:
img = mmcv.adjust_hue(img, hue, backend=self.backend)
results['img'] = img
return results
def __repr__(self):
"""Print the basic information of the transform.
Returns:
str: Formatted string.
"""
repr_str = self.__class__.__name__
repr_str += f'(brightness={self.brightness}, '
repr_str += f'contrast={self.contrast}, '
repr_str += f'saturation={self.saturation}, '
repr_str += f'hue={self.hue})'
return repr_str
@TRANSFORMS.register_module()
class Lighting(BaseTransform):
"""Adjust images lighting using AlexNet-style PCA jitter.
**Required Keys:**
- img
**Modified Keys:**
- img
Args:
eigval (Sequence[float]): the eigenvalue of the convariance matrix
of pixel values, respectively.
eigvec (list[list]): the eigenvector of the convariance matrix of
pixel values, respectively.
alphastd (float): The standard deviation for distribution of alpha.
Defaults to 0.1.
to_rgb (bool): Whether to convert img to rgb. Defaults to False.
"""
def __init__(self,
eigval: Sequence[float],
eigvec: Sequence[float],
alphastd: float = 0.1,
to_rgb: bool = False):
assert isinstance(eigval, Sequence), \
f'eigval must be Sequence, got {type(eigval)} instead.'
assert isinstance(eigvec, Sequence), \
f'eigvec must be Sequence, got {type(eigvec)} instead.'
for vec in eigvec:
assert isinstance(vec, Sequence) and len(vec) == len(eigvec[0]), \
'eigvec must contains lists with equal length.'
assert isinstance(alphastd, float), 'alphastd should be of type ' \
f'float or int, got {type(alphastd)} instead.'
self.eigval = np.array(eigval)
self.eigvec = np.array(eigvec)
self.alphastd = alphastd
self.to_rgb = to_rgb
def transform(self, results: Dict) -> Dict:
"""Transform function to resize images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Lightinged results, 'img' key is updated in result dict.
"""
assert 'img' in results, 'No `img` field in the input.'
img = results['img']
img_lighting = mmcv.adjust_lighting(
img,
self.eigval,
self.eigvec,
alphastd=self.alphastd,
to_rgb=self.to_rgb)
results['img'] = img_lighting.astype(img.dtype)
return results
def __repr__(self):
"""Print the basic information of the transform.
Returns:
str: Formatted string.
"""
repr_str = self.__class__.__name__
repr_str += f'(eigval={self.eigval.tolist()}, '
repr_str += f'eigvec={self.eigvec.tolist()}, '
repr_str += f'alphastd={self.alphastd}, '
repr_str += f'to_rgb={self.to_rgb})'
return repr_str
# 'Albu' is used in previous versions of mmpretrain, here is for compatibility
# users can use both 'Albumentations' and 'Albu'.
@TRANSFORMS.register_module(['Albumentations', 'Albu'])
class Albumentations(BaseTransform):
"""Wrapper to use augmentation from albumentations library.
**Required Keys:**
- img
**Modified Keys:**
- img
- img_shape
Adds custom transformations from albumentations library.
More details can be found in
`Albumentations <https://albumentations.readthedocs.io>`_.
An example of ``transforms`` is as followed:
.. code-block::
[
dict(
type='ShiftScaleRotate',
shift_limit=0.0625,
scale_limit=0.0,
rotate_limit=0,
interpolation=1,
p=0.5),
dict(
type='RandomBrightnessContrast',
brightness_limit=[0.1, 0.3],
contrast_limit=[0.1, 0.3],
p=0.2),
dict(type='ChannelShuffle', p=0.1),
dict(
type='OneOf',
transforms=[
dict(type='Blur', blur_limit=3, p=1.0),
dict(type='MedianBlur', blur_limit=3, p=1.0)
],
p=0.1),
]
Args:
transforms (List[Dict]): List of albumentations transform configs.
keymap (Optional[Dict]): Mapping of mmpretrain to albumentations
fields, in format {'input key':'albumentation-style key'}.
Defaults to None.
Example:
>>> import mmcv
>>> from mmpretrain.datasets import Albumentations
>>> transforms = [
... dict(
... type='ShiftScaleRotate',
... shift_limit=0.0625,
... scale_limit=0.0,
... rotate_limit=0,
... interpolation=1,
... p=0.5),
... dict(
... type='RandomBrightnessContrast',
... brightness_limit=[0.1, 0.3],
... contrast_limit=[0.1, 0.3],
... p=0.2),
... dict(type='ChannelShuffle', p=0.1),
... dict(
... type='OneOf',
... transforms=[
... dict(type='Blur', blur_limit=3, p=1.0),
... dict(type='MedianBlur', blur_limit=3, p=1.0)
... ],
... p=0.1),
... ]
>>> albu = Albumentations(transforms)
>>> data = {'img': mmcv.imread('./demo/demo.JPEG')}
>>> data = albu(data)
>>> print(data['img'].shape)
(375, 500, 3)
"""
def __init__(self, transforms: List[Dict], keymap: Optional[Dict] = None):
if albumentations is None:
raise RuntimeError('albumentations is not installed')
else:
from albumentations import Compose as albu_Compose
assert isinstance(transforms, list), 'transforms must be a list.'
if keymap is not None:
assert isinstance(keymap, dict), 'keymap must be None or a dict. '
self.transforms = transforms
self.aug = albu_Compose(
[self.albu_builder(t) for t in self.transforms])
if not keymap:
self.keymap_to_albu = dict(img='image')
else:
self.keymap_to_albu = keymap
self.keymap_back = {v: k for k, v in self.keymap_to_albu.items()}
def albu_builder(self, cfg: Dict):
"""Import a module from albumentations.
It inherits some of :func:`build_from_cfg` logic.
Args:
cfg (dict): Config dict. It should at least contain the key "type".
Returns:
obj: The constructed object.
"""
assert isinstance(cfg, dict) and 'type' in cfg, 'each item in ' \
"transforms must be a dict with keyword 'type'."
args = cfg.copy()
obj_type = args.pop('type')
if mmengine.is_str(obj_type):
obj_cls = getattr(albumentations, obj_type)
elif inspect.isclass(obj_type):
obj_cls = obj_type
else:
raise TypeError(
f'type must be a str or valid type, but got {type(obj_type)}')
if 'transforms' in args:
args['transforms'] = [
self.albu_builder(transform)
for transform in args['transforms']
]
return obj_cls(**args)
@staticmethod
def mapper(d, keymap):
"""Dictionary mapper.
Renames keys according to keymap provided.
Args:
d (dict): old dict
keymap (dict): {'old_key':'new_key'}
Returns:
dict: new dict.
"""
updated_dict = {}
for k, v in zip(d.keys(), d.values()):
new_k = keymap.get(k, k)
updated_dict[new_k] = d[k]
return updated_dict
def transform(self, results: Dict) -> Dict:
"""Transform function to perform albumentations transforms.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Transformed results, 'img' and 'img_shape' keys are
updated in result dict.
"""
assert 'img' in results, 'No `img` field in the input.'
# dict to albumentations format
results = self.mapper(results, self.keymap_to_albu)
results = self.aug(**results)
# back to the original format
results = self.mapper(results, self.keymap_back)
results['img_shape'] = results['img'].shape[:2]
return results
def __repr__(self):
"""Print the basic information of the transform.
Returns:
str: Formatted string.
"""
repr_str = self.__class__.__name__
repr_str += f'(transforms={repr(self.transforms)})'
return repr_str
@TRANSFORMS.register_module()
class SimMIMMaskGenerator(BaseTransform):
"""Generate random block mask for each Image.
**Added Keys**:
- mask
This module is used in SimMIM to generate masks.
Args:
input_size (int): Size of input image. Defaults to 192.
mask_patch_size (int): Size of each block mask. Defaults to 32.
model_patch_size (int): Patch size of each token. Defaults to 4.
mask_ratio (float): The mask ratio of image. Defaults to 0.6.
"""
def __init__(self,
input_size: int = 192,
mask_patch_size: int = 32,
model_patch_size: int = 4,
mask_ratio: float = 0.6):
self.input_size = input_size
self.mask_patch_size = mask_patch_size
self.model_patch_size = model_patch_size
self.mask_ratio = mask_ratio
assert self.input_size % self.mask_patch_size == 0
assert self.mask_patch_size % self.model_patch_size == 0
self.rand_size = self.input_size // self.mask_patch_size
self.scale = self.mask_patch_size // self.model_patch_size
self.token_count = self.rand_size**2
self.mask_count = int(np.ceil(self.token_count * self.mask_ratio))
def transform(self, results: dict) -> dict:
"""Method to generate random block mask for each Image in SimMIM.
Args:
results (dict): Result dict from previous pipeline.
Returns:
dict: Result dict with added key ``mask``.
"""
mask_idx = np.random.permutation(self.token_count)[:self.mask_count]
mask = np.zeros(self.token_count, dtype=int)
mask[mask_idx] = 1
mask = mask.reshape((self.rand_size, self.rand_size))
mask = mask.repeat(self.scale, axis=0).repeat(self.scale, axis=1)
results.update({'mask': mask})
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(input_size={self.input_size}, '
repr_str += f'mask_patch_size={self.mask_patch_size}, '
repr_str += f'model_patch_size={self.model_patch_size}, '
repr_str += f'mask_ratio={self.mask_ratio})'
return repr_str
@TRANSFORMS.register_module()
class BEiTMaskGenerator(BaseTransform):
"""Generate mask for image.
**Added Keys**:
- mask
This module is borrowed from
https://github.com/microsoft/unilm/tree/master/beit
Args:
input_size (int): The size of input image.
num_masking_patches (int): The number of patches to be masked.
min_num_patches (int): The minimum number of patches to be masked
in the process of generating mask. Defaults to 4.
max_num_patches (int, optional): The maximum number of patches to be
masked in the process of generating mask. Defaults to None.
min_aspect (float): The minimum aspect ratio of mask blocks. Defaults
to 0.3.
min_aspect (float, optional): The minimum aspect ratio of mask blocks.
Defaults to None.
"""
def __init__(self,
input_size: int,
num_masking_patches: int,
min_num_patches: int = 4,
max_num_patches: Optional[int] = None,
min_aspect: float = 0.3,
max_aspect: Optional[float] = None) -> None:
if not isinstance(input_size, tuple):
input_size = (input_size, ) * 2
self.height, self.width = input_size
self.num_patches = self.height * self.width
self.num_masking_patches = num_masking_patches
self.min_num_patches = min_num_patches
self.max_num_patches = num_masking_patches if max_num_patches is None \
else max_num_patches
max_aspect = max_aspect or 1 / min_aspect
self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect))
def _mask(self, mask: np.ndarray, max_mask_patches: int) -> int:
"""Generate mask recursively.
Args:
mask (np.ndarray): The mask to be generated.
max_mask_patches (int): The maximum number of patches to be masked.
Returns:
int: The number of patches masked.
"""
delta = 0
for _ in range(10):
target_area = np.random.uniform(self.min_num_patches,
max_mask_patches)
aspect_ratio = math.exp(np.random.uniform(*self.log_aspect_ratio))
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < self.width and h < self.height:
top = np.random.randint(0, self.height - h)
left = np.random.randint(0, self.width - w)
num_masked = mask[top:top + h, left:left + w].sum()
# Overlap
if 0 < h * w - num_masked <= max_mask_patches:
for i in range(top, top + h):
for j in range(left, left + w):
if mask[i, j] == 0:
mask[i, j] = 1
delta += 1
if delta > 0:
break
return delta
def transform(self, results: dict) -> dict:
"""Method to generate random block mask for each Image in BEiT.
Args:
results (dict): Result dict from previous pipeline.
Returns:
dict: Result dict with added key ``mask``.
"""
mask = np.zeros(shape=(self.height, self.width), dtype=int)
mask_count = 0
while mask_count != self.num_masking_patches:
max_mask_patches = self.num_masking_patches - mask_count
max_mask_patches = min(max_mask_patches, self.max_num_patches)
delta = self._mask(mask, max_mask_patches)
mask_count += delta
results.update({'mask': mask})
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(height={self.height}, '
repr_str += f'width={self.width}, '
repr_str += f'num_patches={self.num_patches}, '
repr_str += f'num_masking_patches={self.num_masking_patches}, '
repr_str += f'min_num_patches={self.min_num_patches}, '
repr_str += f'max_num_patches={self.max_num_patches}, '
repr_str += f'log_aspect_ratio={self.log_aspect_ratio})'
return repr_str
@TRANSFORMS.register_module()
class RandomResizedCropAndInterpolationWithTwoPic(BaseTransform):
"""Crop the given PIL Image to random size and aspect ratio with random
interpolation.
**Required Keys**:
- img
**Modified Keys**:
- img
**Added Keys**:
- target_img
This module is borrowed from
https://github.com/microsoft/unilm/tree/master/beit.
A crop of random size (default: of 0.08 to 1.0) of the original size and a
random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio
is made. This crop is finally resized to given size. This is popularly used
to train the Inception networks. This module first crops the image and
resizes the crop to two different sizes.
Args:
size (Union[tuple, int]): Expected output size of each edge of the
first image.
second_size (Union[tuple, int], optional): Expected output size of each
edge of the second image.
scale (tuple[float, float]): Range of size of the origin size cropped.
Defaults to (0.08, 1.0).
ratio (tuple[float, float]): Range of aspect ratio of the origin aspect
ratio cropped. Defaults to (3./4., 4./3.).
interpolation (str): The interpolation for the first image. Defaults
to ``bilinear``.
second_interpolation (str): The interpolation for the second image.
Defaults to ``lanczos``.
"""
def __init__(self,
size: Union[tuple, int],
second_size=None,
scale=(0.08, 1.0),
ratio=(3. / 4., 4. / 3.),
interpolation='bilinear',
second_interpolation='lanczos') -> None:
if isinstance(size, tuple):
self.size = size
else:
self.size = (size, size)
if second_size is not None:
if isinstance(second_size, tuple):
self.second_size = second_size
else:
self.second_size = (second_size, second_size)
else:
self.second_size = None
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
('range should be of kind (min, max)')
if interpolation == 'random':
self.interpolation = ('bilinear', 'bicubic')
else:
self.interpolation = interpolation
self.second_interpolation = second_interpolation
self.scale = scale
self.ratio = ratio
@staticmethod
def get_params(img: np.ndarray, scale: tuple,
ratio: tuple) -> Sequence[int]:
"""Get parameters for ``crop`` for a random sized crop.
Args:
img (np.ndarray): Image to be cropped.
scale (tuple): range of size of the origin size cropped
ratio (tuple): range of aspect ratio of the origin aspect
ratio cropped
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for a random
sized crop.
"""
img_h, img_w = img.shape[:2]
area = img_h * img_w
for _ in range(10):
target_area = np.random.uniform(*scale) * area
log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
aspect_ratio = math.exp(np.random.uniform(*log_ratio))
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if w < img_w and h < img_h:
i = np.random.randint(0, img_h - h)
j = np.random.randint(0, img_w - w)
return i, j, h, w
# Fallback to central crop
in_ratio = img_w / img_h
if in_ratio < min(ratio):
w = img_w
h = int(round(w / min(ratio)))
elif in_ratio > max(ratio):
h = img_h
w = int(round(h * max(ratio)))
else: # whole image
w = img_w
h = img_h
i = (img_h - h) // 2
j = (img_w - w) // 2
return i, j, h, w
def transform(self, results: dict) -> dict:
"""Crop the given image and resize it to two different sizes.
This module crops the given image randomly and resize the crop to two
different sizes. This is popularly used in BEiT-style masked image
modeling, where an off-the-shelf model is used to provide the target.
Args:
results (dict): Results from previous pipeline.
Returns:
dict: Results after applying this transformation.
"""
img = results['img']
i, j, h, w = self.get_params(img, self.scale, self.ratio)
if isinstance(self.interpolation, (tuple, list)):
interpolation = np.random.choice(self.interpolation)
else:
interpolation = self.interpolation
if self.second_size is None:
img = img[i:i + h, j:j + w]
img = mmcv.imresize(img, self.size, interpolation=interpolation)
results.update({'img': img})
else:
img = img[i:i + h, j:j + w]
img_sample = mmcv.imresize(
img, self.size, interpolation=interpolation)
img_target = mmcv.imresize(
img, self.second_size, interpolation=self.second_interpolation)
results.update({'img': [img_sample, img_target]})
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(size={self.size}, '
repr_str += f'second_size={self.second_size}, '
repr_str += f'interpolation={self.interpolation}, '
repr_str += f'second_interpolation={self.second_interpolation}, '
repr_str += f'scale={self.scale}, '
repr_str += f'ratio={self.ratio})'
return repr_str
@TRANSFORMS.register_module()
class CleanCaption(BaseTransform):
"""Clean caption text.
Remove some useless punctuation for the caption task.
**Required Keys:**
- ``*keys``
**Modified Keys:**
- ``*keys``
Args:
keys (Sequence[str], optional): The keys of text to be cleaned.
Defaults to 'gt_caption'.
remove_chars (str): The characters to be removed. Defaults to
:py:attr:`string.punctuation`.
lowercase (bool): Whether to convert the text to lowercase.
Defaults to True.
remove_dup_space (bool): Whether to remove duplicated whitespaces.
Defaults to True.
strip (bool): Whether to remove leading and trailing whitespaces.
Defaults to True.
"""
def __init__(
self,
keys='gt_caption',
remove_chars=string.punctuation,
lowercase=True,
remove_dup_space=True,
strip=True,
):
if isinstance(keys, str):
keys = [keys]
self.keys = keys
self.transtab = str.maketrans({ch: None for ch in remove_chars})
self.lowercase = lowercase
self.remove_dup_space = remove_dup_space
self.strip = strip
def _clean(self, text):
"""Perform text cleaning before tokenizer."""
if self.strip:
text = text.strip()
text = text.translate(self.transtab)
if self.remove_dup_space:
text = re.sub(r'\s{2,}', ' ', text)
if self.lowercase:
text = text.lower()
return text
def clean(self, text):
"""Perform text cleaning before tokenizer."""
if isinstance(text, (list, tuple)):
return [self._clean(item) for item in text]
elif isinstance(text, str):
return self._clean(text)
else:
raise TypeError('text must be a string or a list of strings')
def transform(self, results: dict) -> dict:
"""Method to clean the input text data."""
for key in self.keys:
results[key] = self.clean(results[key])
return results
@TRANSFORMS.register_module()
class OFAAddObjects(BaseTransform):
def transform(self, results: dict) -> dict:
if 'objects' not in results:
raise ValueError(
'Some OFA fine-tuned models requires `objects` field in the '
'dataset, which is generated by VinVL. Or please use '
'zero-shot configs. See '
'https://github.com/OFA-Sys/OFA/issues/189')
if 'question' in results:
prompt = '{} object: {}'.format(
results['question'],
' '.join(results['objects']),
)
results['decoder_prompt'] = prompt
results['question'] = prompt
@TRANSFORMS.register_module()
class RandomTranslatePad(BaseTransform):
def __init__(self, size=640, aug_translate=False):
self.size = size
self.aug_translate = aug_translate
@cache_randomness
def rand_translate_params(self, dh, dw):
top = np.random.randint(0, dh)
left = np.random.randint(0, dw)
return top, left
def transform(self, results: dict) -> dict:
img = results['img']
h, w = img.shape[:-1]
dw = self.size - w
dh = self.size - h
if self.aug_translate:
top, left = self.rand_translate_params(dh, dw)
else:
top = round(dh / 2.0 - 0.1)
left = round(dw / 2.0 - 0.1)
out_img = np.zeros((self.size, self.size, 3), dtype=np.float32)
out_img[top:top + h, left:left + w, :] = img
results['img'] = out_img
results['img_shape'] = (self.size, self.size)
# translate box
if 'gt_bboxes' in results.keys():
for i in range(len(results['gt_bboxes'])):
box = results['gt_bboxes'][i]
box[0], box[2] = box[0] + left, box[2] + left
box[1], box[3] = box[1] + top, box[3] + top
results['gt_bboxes'][i] = box
return results
@TRANSFORMS.register_module()
class MAERandomResizedCrop(transforms.RandomResizedCrop):
"""RandomResizedCrop for matching TF/TPU implementation: no for-loop is
used.
This may lead to results different with torchvision's version.
Following BYOL's TF code:
https://github.com/deepmind/deepmind-research/blob/master/byol/utils/dataset.py#L206 # noqa: E501
"""
@staticmethod
def get_params(img: Image.Image, scale: tuple, ratio: tuple) -> Tuple:
width, height = img.size
area = height * width
target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
log_ratio = torch.log(torch.tensor(ratio))
aspect_ratio = torch.exp(
torch.empty(1).uniform_(log_ratio[0], log_ratio[1])).item()
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
w = min(w, width)
h = min(h, height)
i = torch.randint(0, height - h + 1, size=(1, )).item()
j = torch.randint(0, width - w + 1, size=(1, )).item()
return i, j, h, w
def forward(self, results: dict) -> dict:
"""The forward function of MAERandomResizedCrop.
Args:
results (dict): The results dict contains the image and all these
information related to the image.
Returns:
dict: The results dict contains the cropped image and all these
information related to the image.
"""
img = results['img']
i, j, h, w = self.get_params(img, self.scale, self.ratio)
img = F.resized_crop(img, i, j, h, w, self.size, self.interpolation)
results['img'] = img
return results