Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import inspect | |
import math | |
import numbers | |
import re | |
import string | |
from enum import EnumMeta | |
from numbers import Number | |
from typing import Dict, List, Optional, Sequence, Tuple, Union | |
import mmcv | |
import mmengine | |
import numpy as np | |
import torch | |
import torchvision | |
import torchvision.transforms.functional as F | |
from mmcv.transforms import BaseTransform | |
from mmcv.transforms.utils import cache_randomness | |
from PIL import Image | |
from torchvision import transforms | |
from torchvision.transforms.transforms import InterpolationMode | |
from mmpretrain.registry import TRANSFORMS | |
try: | |
import albumentations | |
except ImportError: | |
albumentations = None | |
def _str_to_torch_dtype(t: str): | |
"""mapping str format dtype to torch.dtype.""" | |
import torch # noqa: F401,F403 | |
return eval(f'torch.{t}') | |
def _interpolation_modes_from_str(t: str): | |
"""mapping str format to Interpolation.""" | |
t = t.lower() | |
inverse_modes_mapping = { | |
'nearest': InterpolationMode.NEAREST, | |
'bilinear': InterpolationMode.BILINEAR, | |
'bicubic': InterpolationMode.BICUBIC, | |
'box': InterpolationMode.BOX, | |
'hammimg': InterpolationMode.HAMMING, | |
'lanczos': InterpolationMode.LANCZOS, | |
} | |
return inverse_modes_mapping[t] | |
class TorchVisonTransformWrapper: | |
def __init__(self, transform, *args, **kwargs): | |
if 'interpolation' in kwargs and isinstance(kwargs['interpolation'], | |
str): | |
kwargs['interpolation'] = _interpolation_modes_from_str( | |
kwargs['interpolation']) | |
if 'dtype' in kwargs and isinstance(kwargs['dtype'], str): | |
kwargs['dtype'] = _str_to_torch_dtype(kwargs['dtype']) | |
self.t = transform(*args, **kwargs) | |
def __call__(self, results): | |
results['img'] = self.t(results['img']) | |
return results | |
def __repr__(self) -> str: | |
return f'TorchVision{repr(self.t)}' | |
def register_vision_transforms() -> List[str]: | |
"""Register transforms in ``torchvision.transforms`` to the ``TRANSFORMS`` | |
registry. | |
Returns: | |
List[str]: A list of registered transforms' name. | |
""" | |
vision_transforms = [] | |
for module_name in dir(torchvision.transforms): | |
if not re.match('[A-Z]', module_name): | |
# must startswith a capital letter | |
continue | |
_transform = getattr(torchvision.transforms, module_name) | |
if inspect.isclass(_transform) and callable( | |
_transform) and not isinstance(_transform, (EnumMeta)): | |
from functools import partial | |
TRANSFORMS.register_module( | |
module=partial( | |
TorchVisonTransformWrapper, transform=_transform), | |
name=f'torchvision/{module_name}') | |
vision_transforms.append(f'torchvision/{module_name}') | |
return vision_transforms | |
# register all the transforms in torchvision by using a transform wrapper | |
VISION_TRANSFORMS = register_vision_transforms() | |
class RandomCrop(BaseTransform): | |
"""Crop the given Image at a random location. | |
**Required Keys:** | |
- img | |
**Modified Keys:** | |
- img | |
- img_shape | |
Args: | |
crop_size (int | Sequence): Desired output size of the crop. If | |
crop_size is an int instead of sequence like (h, w), a square crop | |
(crop_size, crop_size) is made. | |
padding (int | Sequence, optional): Optional padding on each border | |
of the image. If a sequence of length 4 is provided, it is used to | |
pad left, top, right, bottom borders respectively. If a sequence | |
of length 2 is provided, it is used to pad left/right, top/bottom | |
borders, respectively. Default: None, which means no padding. | |
pad_if_needed (bool): It will pad the image if smaller than the | |
desired size to avoid raising an exception. Since cropping is done | |
after padding, the padding seems to be done at a random offset. | |
Default: False. | |
pad_val (Number | Sequence[Number]): Pixel pad_val value for constant | |
fill. If a tuple of length 3, it is used to pad_val R, G, B | |
channels respectively. Default: 0. | |
padding_mode (str): Type of padding. Defaults to "constant". Should | |
be one of the following: | |
- ``constant``: Pads with a constant value, this value is specified | |
with pad_val. | |
- ``edge``: pads with the last value at the edge of the image. | |
- ``reflect``: Pads with reflection of image without repeating the | |
last value on the edge. For example, padding [1, 2, 3, 4] | |
with 2 elements on both sides in reflect mode will result | |
in [3, 2, 1, 2, 3, 4, 3, 2]. | |
- ``symmetric``: Pads with reflection of image repeating the last | |
value on the edge. For example, padding [1, 2, 3, 4] with | |
2 elements on both sides in symmetric mode will result in | |
[2, 1, 1, 2, 3, 4, 4, 3]. | |
""" | |
def __init__(self, | |
crop_size: Union[Sequence, int], | |
padding: Optional[Union[Sequence, int]] = None, | |
pad_if_needed: bool = False, | |
pad_val: Union[Number, Sequence[Number]] = 0, | |
padding_mode: str = 'constant'): | |
if isinstance(crop_size, Sequence): | |
assert len(crop_size) == 2 | |
assert crop_size[0] > 0 and crop_size[1] > 0 | |
self.crop_size = crop_size | |
else: | |
assert crop_size > 0 | |
self.crop_size = (crop_size, crop_size) | |
# check padding mode | |
assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'] | |
self.padding = padding | |
self.pad_if_needed = pad_if_needed | |
self.pad_val = pad_val | |
self.padding_mode = padding_mode | |
def rand_crop_params(self, img: np.ndarray): | |
"""Get parameters for ``crop`` for a random crop. | |
Args: | |
img (ndarray): Image to be cropped. | |
Returns: | |
tuple: Params (offset_h, offset_w, target_h, target_w) to be | |
passed to ``crop`` for random crop. | |
""" | |
h, w = img.shape[:2] | |
target_h, target_w = self.crop_size | |
if w == target_w and h == target_h: | |
return 0, 0, h, w | |
elif w < target_w or h < target_h: | |
target_w = min(w, target_w) | |
target_h = min(h, target_h) | |
offset_h = np.random.randint(0, h - target_h + 1) | |
offset_w = np.random.randint(0, w - target_w + 1) | |
return offset_h, offset_w, target_h, target_w | |
def transform(self, results: dict) -> dict: | |
"""Transform function to randomly crop images. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Randomly cropped results, 'img_shape' | |
key in result dict is updated according to crop size. | |
""" | |
img = results['img'] | |
if self.padding is not None: | |
img = mmcv.impad(img, padding=self.padding, pad_val=self.pad_val) | |
# pad img if needed | |
if self.pad_if_needed: | |
h_pad = math.ceil(max(0, self.crop_size[0] - img.shape[0]) / 2) | |
w_pad = math.ceil(max(0, self.crop_size[1] - img.shape[1]) / 2) | |
img = mmcv.impad( | |
img, | |
padding=(w_pad, h_pad, w_pad, h_pad), | |
pad_val=self.pad_val, | |
padding_mode=self.padding_mode) | |
offset_h, offset_w, target_h, target_w = self.rand_crop_params(img) | |
img = mmcv.imcrop( | |
img, | |
np.array([ | |
offset_w, | |
offset_h, | |
offset_w + target_w - 1, | |
offset_h + target_h - 1, | |
])) | |
results['img'] = img | |
results['img_shape'] = img.shape | |
return results | |
def __repr__(self): | |
"""Print the basic information of the transform. | |
Returns: | |
str: Formatted string. | |
""" | |
repr_str = self.__class__.__name__ + f'(crop_size={self.crop_size}' | |
repr_str += f', padding={self.padding}' | |
repr_str += f', pad_if_needed={self.pad_if_needed}' | |
repr_str += f', pad_val={self.pad_val}' | |
repr_str += f', padding_mode={self.padding_mode})' | |
return repr_str | |
class RandomResizedCrop(BaseTransform): | |
"""Crop the given image to random scale and aspect ratio. | |
A crop of random size (default: of 0.08 to 1.0) of the original size and a | |
random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio | |
is made. This crop is finally resized to given size. | |
**Required Keys:** | |
- img | |
**Modified Keys:** | |
- img | |
- img_shape | |
Args: | |
scale (sequence | int): Desired output scale of the crop. If size is an | |
int instead of sequence like (h, w), a square crop (size, size) is | |
made. | |
crop_ratio_range (tuple): Range of the random size of the cropped | |
image compared to the original image. Defaults to (0.08, 1.0). | |
aspect_ratio_range (tuple): Range of the random aspect ratio of the | |
cropped image compared to the original image. | |
Defaults to (3. / 4., 4. / 3.). | |
max_attempts (int): Maximum number of attempts before falling back to | |
Central Crop. Defaults to 10. | |
interpolation (str): Interpolation method, accepted values are | |
'nearest', 'bilinear', 'bicubic', 'area', 'lanczos'. Defaults to | |
'bilinear'. | |
backend (str): The image resize backend type, accepted values are | |
'cv2' and 'pillow'. Defaults to 'cv2'. | |
""" | |
def __init__(self, | |
scale: Union[Sequence, int], | |
crop_ratio_range: Tuple[float, float] = (0.08, 1.0), | |
aspect_ratio_range: Tuple[float, float] = (3. / 4., 4. / 3.), | |
max_attempts: int = 10, | |
interpolation: str = 'bilinear', | |
backend: str = 'cv2') -> None: | |
if isinstance(scale, Sequence): | |
assert len(scale) == 2 | |
assert scale[0] > 0 and scale[1] > 0 | |
self.scale = scale | |
else: | |
assert scale > 0 | |
self.scale = (scale, scale) | |
if (crop_ratio_range[0] > crop_ratio_range[1]) or ( | |
aspect_ratio_range[0] > aspect_ratio_range[1]): | |
raise ValueError( | |
'range should be of kind (min, max). ' | |
f'But received crop_ratio_range {crop_ratio_range} ' | |
f'and aspect_ratio_range {aspect_ratio_range}.') | |
assert isinstance(max_attempts, int) and max_attempts >= 0, \ | |
'max_attempts mush be int and no less than 0.' | |
assert interpolation in ('nearest', 'bilinear', 'bicubic', 'area', | |
'lanczos') | |
self.crop_ratio_range = crop_ratio_range | |
self.aspect_ratio_range = aspect_ratio_range | |
self.max_attempts = max_attempts | |
self.interpolation = interpolation | |
self.backend = backend | |
def rand_crop_params(self, img: np.ndarray) -> Tuple[int, int, int, int]: | |
"""Get parameters for ``crop`` for a random sized crop. | |
Args: | |
img (ndarray): Image to be cropped. | |
Returns: | |
tuple: Params (offset_h, offset_w, target_h, target_w) to be | |
passed to `crop` for a random sized crop. | |
""" | |
h, w = img.shape[:2] | |
area = h * w | |
for _ in range(self.max_attempts): | |
target_area = np.random.uniform(*self.crop_ratio_range) * area | |
log_ratio = (math.log(self.aspect_ratio_range[0]), | |
math.log(self.aspect_ratio_range[1])) | |
aspect_ratio = math.exp(np.random.uniform(*log_ratio)) | |
target_w = int(round(math.sqrt(target_area * aspect_ratio))) | |
target_h = int(round(math.sqrt(target_area / aspect_ratio))) | |
if 0 < target_w <= w and 0 < target_h <= h: | |
offset_h = np.random.randint(0, h - target_h + 1) | |
offset_w = np.random.randint(0, w - target_w + 1) | |
return offset_h, offset_w, target_h, target_w | |
# Fallback to central crop | |
in_ratio = float(w) / float(h) | |
if in_ratio < min(self.aspect_ratio_range): | |
target_w = w | |
target_h = int(round(target_w / min(self.aspect_ratio_range))) | |
elif in_ratio > max(self.aspect_ratio_range): | |
target_h = h | |
target_w = int(round(target_h * max(self.aspect_ratio_range))) | |
else: # whole image | |
target_w = w | |
target_h = h | |
offset_h = (h - target_h) // 2 | |
offset_w = (w - target_w) // 2 | |
return offset_h, offset_w, target_h, target_w | |
def transform(self, results: dict) -> dict: | |
"""Transform function to randomly resized crop images. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Randomly resized cropped results, 'img_shape' | |
key in result dict is updated according to crop size. | |
""" | |
img = results['img'] | |
offset_h, offset_w, target_h, target_w = self.rand_crop_params(img) | |
img = mmcv.imcrop( | |
img, | |
bboxes=np.array([ | |
offset_w, offset_h, offset_w + target_w - 1, | |
offset_h + target_h - 1 | |
])) | |
img = mmcv.imresize( | |
img, | |
tuple(self.scale[::-1]), | |
interpolation=self.interpolation, | |
backend=self.backend) | |
results['img'] = img | |
results['img_shape'] = img.shape | |
return results | |
def __repr__(self): | |
"""Print the basic information of the transform. | |
Returns: | |
str: Formatted string. | |
""" | |
repr_str = self.__class__.__name__ + f'(scale={self.scale}' | |
repr_str += ', crop_ratio_range=' | |
repr_str += f'{tuple(round(s, 4) for s in self.crop_ratio_range)}' | |
repr_str += ', aspect_ratio_range=' | |
repr_str += f'{tuple(round(r, 4) for r in self.aspect_ratio_range)}' | |
repr_str += f', max_attempts={self.max_attempts}' | |
repr_str += f', interpolation={self.interpolation}' | |
repr_str += f', backend={self.backend})' | |
return repr_str | |
class EfficientNetRandomCrop(RandomResizedCrop): | |
"""EfficientNet style RandomResizedCrop. | |
**Required Keys:** | |
- img | |
**Modified Keys:** | |
- img | |
- img_shape | |
Args: | |
scale (int): Desired output scale of the crop. Only int size is | |
accepted, a square crop (size, size) is made. | |
min_covered (Number): Minimum ratio of the cropped area to the original | |
area. Defaults to 0.1. | |
crop_padding (int): The crop padding parameter in efficientnet style | |
center crop. Defaults to 32. | |
crop_ratio_range (tuple): Range of the random size of the cropped | |
image compared to the original image. Defaults to (0.08, 1.0). | |
aspect_ratio_range (tuple): Range of the random aspect ratio of the | |
cropped image compared to the original image. | |
Defaults to (3. / 4., 4. / 3.). | |
max_attempts (int): Maximum number of attempts before falling back to | |
Central Crop. Defaults to 10. | |
interpolation (str): Interpolation method, accepted values are | |
'nearest', 'bilinear', 'bicubic', 'area', 'lanczos'. Defaults to | |
'bicubic'. | |
backend (str): The image resize backend type, accepted values are | |
'cv2' and 'pillow'. Defaults to 'cv2'. | |
""" | |
def __init__(self, | |
scale: int, | |
min_covered: float = 0.1, | |
crop_padding: int = 32, | |
interpolation: str = 'bicubic', | |
**kwarg): | |
assert isinstance(scale, int) | |
super().__init__(scale, interpolation=interpolation, **kwarg) | |
assert min_covered >= 0, 'min_covered should be no less than 0.' | |
assert crop_padding >= 0, 'crop_padding should be no less than 0.' | |
self.min_covered = min_covered | |
self.crop_padding = crop_padding | |
# https://github.com/kakaobrain/fast-autoaugment/blob/master/FastAutoAugment/data.py # noqa | |
def rand_crop_params(self, img: np.ndarray) -> Tuple[int, int, int, int]: | |
"""Get parameters for ``crop`` for a random sized crop. | |
Args: | |
img (ndarray): Image to be cropped. | |
Returns: | |
tuple: Params (offset_h, offset_w, target_h, target_w) to be | |
passed to `crop` for a random sized crop. | |
""" | |
h, w = img.shape[:2] | |
area = h * w | |
min_target_area = self.crop_ratio_range[0] * area | |
max_target_area = self.crop_ratio_range[1] * area | |
for _ in range(self.max_attempts): | |
aspect_ratio = np.random.uniform(*self.aspect_ratio_range) | |
min_target_h = int( | |
round(math.sqrt(min_target_area / aspect_ratio))) | |
max_target_h = int( | |
round(math.sqrt(max_target_area / aspect_ratio))) | |
if max_target_h * aspect_ratio > w: | |
max_target_h = int((w + 0.5 - 1e-7) / aspect_ratio) | |
if max_target_h * aspect_ratio > w: | |
max_target_h -= 1 | |
max_target_h = min(max_target_h, h) | |
min_target_h = min(max_target_h, min_target_h) | |
# slightly differs from tf implementation | |
target_h = int( | |
round(np.random.uniform(min_target_h, max_target_h))) | |
target_w = int(round(target_h * aspect_ratio)) | |
target_area = target_h * target_w | |
# slight differs from tf. In tf, if target_area > max_target_area, | |
# area will be recalculated | |
if (target_area < min_target_area or target_area > max_target_area | |
or target_w > w or target_h > h | |
or target_area < self.min_covered * area): | |
continue | |
offset_h = np.random.randint(0, h - target_h + 1) | |
offset_w = np.random.randint(0, w - target_w + 1) | |
return offset_h, offset_w, target_h, target_w | |
# Fallback to central crop | |
img_short = min(h, w) | |
crop_size = self.scale[0] / (self.scale[0] + | |
self.crop_padding) * img_short | |
offset_h = max(0, int(round((h - crop_size) / 2.))) | |
offset_w = max(0, int(round((w - crop_size) / 2.))) | |
return offset_h, offset_w, crop_size, crop_size | |
def __repr__(self): | |
"""Print the basic information of the transform. | |
Returns: | |
str: Formatted string. | |
""" | |
repr_str = super().__repr__()[:-1] | |
repr_str += f', min_covered={self.min_covered}' | |
repr_str += f', crop_padding={self.crop_padding})' | |
return repr_str | |
class RandomErasing(BaseTransform): | |
"""Randomly selects a rectangle region in an image and erase pixels. | |
**Required Keys:** | |
- img | |
**Modified Keys:** | |
- img | |
Args: | |
erase_prob (float): Probability that image will be randomly erased. | |
Default: 0.5 | |
min_area_ratio (float): Minimum erased area / input image area | |
Default: 0.02 | |
max_area_ratio (float): Maximum erased area / input image area | |
Default: 0.4 | |
aspect_range (sequence | float): Aspect ratio range of erased area. | |
if float, it will be converted to (aspect_ratio, 1/aspect_ratio) | |
Default: (3/10, 10/3) | |
mode (str): Fill method in erased area, can be: | |
- const (default): All pixels are assign with the same value. | |
- rand: each pixel is assigned with a random value in [0, 255] | |
fill_color (sequence | Number): Base color filled in erased area. | |
Defaults to (128, 128, 128). | |
fill_std (sequence | Number, optional): If set and ``mode`` is 'rand', | |
fill erased area with random color from normal distribution | |
(mean=fill_color, std=fill_std); If not set, fill erased area with | |
random color from uniform distribution (0~255). Defaults to None. | |
Note: | |
See `Random Erasing Data Augmentation | |
<https://arxiv.org/pdf/1708.04896.pdf>`_ | |
This paper provided 4 modes: RE-R, RE-M, RE-0, RE-255, and use RE-M as | |
default. The config of these 4 modes are: | |
- RE-R: RandomErasing(mode='rand') | |
- RE-M: RandomErasing(mode='const', fill_color=(123.67, 116.3, 103.5)) | |
- RE-0: RandomErasing(mode='const', fill_color=0) | |
- RE-255: RandomErasing(mode='const', fill_color=255) | |
""" | |
def __init__(self, | |
erase_prob=0.5, | |
min_area_ratio=0.02, | |
max_area_ratio=0.4, | |
aspect_range=(3 / 10, 10 / 3), | |
mode='const', | |
fill_color=(128, 128, 128), | |
fill_std=None): | |
assert isinstance(erase_prob, float) and 0. <= erase_prob <= 1. | |
assert isinstance(min_area_ratio, float) and 0. <= min_area_ratio <= 1. | |
assert isinstance(max_area_ratio, float) and 0. <= max_area_ratio <= 1. | |
assert min_area_ratio <= max_area_ratio, \ | |
'min_area_ratio should be smaller than max_area_ratio' | |
if isinstance(aspect_range, float): | |
aspect_range = min(aspect_range, 1 / aspect_range) | |
aspect_range = (aspect_range, 1 / aspect_range) | |
assert isinstance(aspect_range, Sequence) and len(aspect_range) == 2 \ | |
and all(isinstance(x, float) for x in aspect_range), \ | |
'aspect_range should be a float or Sequence with two float.' | |
assert all(x > 0 for x in aspect_range), \ | |
'aspect_range should be positive.' | |
assert aspect_range[0] <= aspect_range[1], \ | |
'In aspect_range (min, max), min should be smaller than max.' | |
assert mode in ['const', 'rand'], \ | |
'Please select `mode` from ["const", "rand"].' | |
if isinstance(fill_color, Number): | |
fill_color = [fill_color] * 3 | |
assert isinstance(fill_color, Sequence) and len(fill_color) == 3 \ | |
and all(isinstance(x, Number) for x in fill_color), \ | |
'fill_color should be a float or Sequence with three int.' | |
if fill_std is not None: | |
if isinstance(fill_std, Number): | |
fill_std = [fill_std] * 3 | |
assert isinstance(fill_std, Sequence) and len(fill_std) == 3 \ | |
and all(isinstance(x, Number) for x in fill_std), \ | |
'fill_std should be a float or Sequence with three int.' | |
self.erase_prob = erase_prob | |
self.min_area_ratio = min_area_ratio | |
self.max_area_ratio = max_area_ratio | |
self.aspect_range = aspect_range | |
self.mode = mode | |
self.fill_color = fill_color | |
self.fill_std = fill_std | |
def _fill_pixels(self, img, top, left, h, w): | |
"""Fill pixels to the patch of image.""" | |
if self.mode == 'const': | |
patch = np.empty((h, w, 3), dtype=np.uint8) | |
patch[:, :] = np.array(self.fill_color, dtype=np.uint8) | |
elif self.fill_std is None: | |
# Uniform distribution | |
patch = np.random.uniform(0, 256, (h, w, 3)).astype(np.uint8) | |
else: | |
# Normal distribution | |
patch = np.random.normal(self.fill_color, self.fill_std, (h, w, 3)) | |
patch = np.clip(patch.astype(np.int32), 0, 255).astype(np.uint8) | |
img[top:top + h, left:left + w] = patch | |
return img | |
def random_disable(self): | |
"""Randomly disable the transform.""" | |
return np.random.rand() > self.erase_prob | |
def random_patch(self, img_h, img_w): | |
"""Randomly generate patch the erase.""" | |
# convert the aspect ratio to log space to equally handle width and | |
# height. | |
log_aspect_range = np.log( | |
np.array(self.aspect_range, dtype=np.float32)) | |
aspect_ratio = np.exp(np.random.uniform(*log_aspect_range)) | |
area = img_h * img_w | |
area *= np.random.uniform(self.min_area_ratio, self.max_area_ratio) | |
h = min(int(round(np.sqrt(area * aspect_ratio))), img_h) | |
w = min(int(round(np.sqrt(area / aspect_ratio))), img_w) | |
top = np.random.randint(0, img_h - h) if img_h > h else 0 | |
left = np.random.randint(0, img_w - w) if img_w > w else 0 | |
return top, left, h, w | |
def transform(self, results): | |
""" | |
Args: | |
results (dict): Results dict from pipeline | |
Returns: | |
dict: Results after the transformation. | |
""" | |
if self.random_disable(): | |
return results | |
img = results['img'] | |
img_h, img_w = img.shape[:2] | |
img = self._fill_pixels(img, *self.random_patch(img_h, img_w)) | |
results['img'] = img | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(erase_prob={self.erase_prob}, ' | |
repr_str += f'min_area_ratio={self.min_area_ratio}, ' | |
repr_str += f'max_area_ratio={self.max_area_ratio}, ' | |
repr_str += f'aspect_range={self.aspect_range}, ' | |
repr_str += f'mode={self.mode}, ' | |
repr_str += f'fill_color={self.fill_color}, ' | |
repr_str += f'fill_std={self.fill_std})' | |
return repr_str | |
class EfficientNetCenterCrop(BaseTransform): | |
r"""EfficientNet style center crop. | |
**Required Keys:** | |
- img | |
**Modified Keys:** | |
- img | |
- img_shape | |
Args: | |
crop_size (int): Expected size after cropping with the format | |
of (h, w). | |
crop_padding (int): The crop padding parameter in efficientnet style | |
center crop. Defaults to 32. | |
interpolation (str): Interpolation method, accepted values are | |
'nearest', 'bilinear', 'bicubic', 'area', 'lanczos'. Only valid if | |
``efficientnet_style`` is True. Defaults to 'bicubic'. | |
backend (str): The image resize backend type, accepted values are | |
`cv2` and `pillow`. Only valid if efficientnet style is True. | |
Defaults to `cv2`. | |
Notes: | |
- If the image is smaller than the crop size, return the original | |
image. | |
- The pipeline will be to first | |
to perform the center crop with the ``crop_size_`` as: | |
.. math:: | |
\text{crop_size_} = \frac{\text{crop_size}}{\text{crop_size} + | |
\text{crop_padding}} \times \text{short_edge} | |
And then the pipeline resizes the img to the input crop size. | |
""" | |
def __init__(self, | |
crop_size: int, | |
crop_padding: int = 32, | |
interpolation: str = 'bicubic', | |
backend: str = 'cv2'): | |
assert isinstance(crop_size, int) | |
assert crop_size > 0 | |
assert crop_padding >= 0 | |
assert interpolation in ('nearest', 'bilinear', 'bicubic', 'area', | |
'lanczos') | |
self.crop_size = crop_size | |
self.crop_padding = crop_padding | |
self.interpolation = interpolation | |
self.backend = backend | |
def transform(self, results: dict) -> dict: | |
"""Transform function to randomly resized crop images. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: EfficientNet style center cropped results, 'img_shape' | |
key in result dict is updated according to crop size. | |
""" | |
img = results['img'] | |
h, w = img.shape[:2] | |
# https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/preprocessing.py#L118 # noqa | |
img_short = min(h, w) | |
crop_size = self.crop_size / (self.crop_size + | |
self.crop_padding) * img_short | |
offset_h = max(0, int(round((h - crop_size) / 2.))) | |
offset_w = max(0, int(round((w - crop_size) / 2.))) | |
# crop the image | |
img = mmcv.imcrop( | |
img, | |
bboxes=np.array([ | |
offset_w, offset_h, offset_w + crop_size - 1, | |
offset_h + crop_size - 1 | |
])) | |
# resize image | |
img = mmcv.imresize( | |
img, (self.crop_size, self.crop_size), | |
interpolation=self.interpolation, | |
backend=self.backend) | |
results['img'] = img | |
results['img_shape'] = img.shape | |
return results | |
def __repr__(self): | |
"""Print the basic information of the transform. | |
Returns: | |
str: Formatted string. | |
""" | |
repr_str = self.__class__.__name__ + f'(crop_size={self.crop_size}' | |
repr_str += f', crop_padding={self.crop_padding}' | |
repr_str += f', interpolation={self.interpolation}' | |
repr_str += f', backend={self.backend})' | |
return repr_str | |
class ResizeEdge(BaseTransform): | |
"""Resize images along the specified edge. | |
**Required Keys:** | |
- img | |
**Modified Keys:** | |
- img | |
- img_shape | |
**Added Keys:** | |
- scale | |
- scale_factor | |
Args: | |
scale (int): The edge scale to resizing. | |
edge (str): The edge to resize. Defaults to 'short'. | |
backend (str): Image resize backend, choices are 'cv2' and 'pillow'. | |
These two backends generates slightly different results. | |
Defaults to 'cv2'. | |
interpolation (str): Interpolation method, accepted values are | |
"nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2' | |
backend, "nearest", "bilinear" for 'pillow' backend. | |
Defaults to 'bilinear'. | |
""" | |
def __init__(self, | |
scale: int, | |
edge: str = 'short', | |
backend: str = 'cv2', | |
interpolation: str = 'bilinear') -> None: | |
allow_edges = ['short', 'long', 'width', 'height'] | |
assert edge in allow_edges, \ | |
f'Invalid edge "{edge}", please specify from {allow_edges}.' | |
self.edge = edge | |
self.scale = scale | |
self.backend = backend | |
self.interpolation = interpolation | |
def _resize_img(self, results: dict) -> None: | |
"""Resize images with ``results['scale']``.""" | |
img, w_scale, h_scale = mmcv.imresize( | |
results['img'], | |
results['scale'], | |
interpolation=self.interpolation, | |
return_scale=True, | |
backend=self.backend) | |
results['img'] = img | |
results['img_shape'] = img.shape[:2] | |
results['scale'] = img.shape[:2][::-1] | |
results['scale_factor'] = (w_scale, h_scale) | |
def transform(self, results: Dict) -> Dict: | |
"""Transform function to resize images. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Resized results, 'img', 'scale', 'scale_factor', | |
'img_shape' keys are updated in result dict. | |
""" | |
assert 'img' in results, 'No `img` field in the input.' | |
h, w = results['img'].shape[:2] | |
if any([ | |
# conditions to resize the width | |
self.edge == 'short' and w < h, | |
self.edge == 'long' and w > h, | |
self.edge == 'width', | |
]): | |
width = self.scale | |
height = int(self.scale * h / w) | |
else: | |
height = self.scale | |
width = int(self.scale * w / h) | |
results['scale'] = (width, height) | |
self._resize_img(results) | |
return results | |
def __repr__(self): | |
"""Print the basic information of the transform. | |
Returns: | |
str: Formatted string. | |
""" | |
repr_str = self.__class__.__name__ | |
repr_str += f'(scale={self.scale}, ' | |
repr_str += f'edge={self.edge}, ' | |
repr_str += f'backend={self.backend}, ' | |
repr_str += f'interpolation={self.interpolation})' | |
return repr_str | |
class ColorJitter(BaseTransform): | |
"""Randomly change the brightness, contrast and saturation of an image. | |
Modified from | |
https://github.com/pytorch/vision/blob/main/torchvision/transforms/transforms.py | |
Licensed under the BSD 3-Clause License. | |
**Required Keys:** | |
- img | |
**Modified Keys:** | |
- img | |
Args: | |
brightness (float | Sequence[float] (min, max)): How much to jitter | |
brightness. brightness_factor is chosen uniformly from | |
``[max(0, 1 - brightness), 1 + brightness]`` or the given | |
``[min, max]``. Should be non negative numbers. Defaults to 0. | |
contrast (float | Sequence[float] (min, max)): How much to jitter | |
contrast. contrast_factor is chosen uniformly from | |
``[max(0, 1 - contrast), 1 + contrast]`` or the given | |
``[min, max]``. Should be non negative numbers. Defaults to 0. | |
saturation (float | Sequence[float] (min, max)): How much to jitter | |
saturation. saturation_factor is chosen uniformly from | |
``[max(0, 1 - saturation), 1 + saturation]`` or the given | |
``[min, max]``. Should be non negative numbers. Defaults to 0. | |
hue (float | Sequence[float] (min, max)): How much to jitter hue. | |
hue_factor is chosen uniformly from ``[-hue, hue]`` (0 <= hue | |
<= 0.5) or the given ``[min, max]`` (-0.5 <= min <= max <= 0.5). | |
Defaults to 0. | |
backend (str): The backend to operate the image. Defaults to 'pillow' | |
""" | |
def __init__(self, | |
brightness: Union[float, Sequence[float]] = 0., | |
contrast: Union[float, Sequence[float]] = 0., | |
saturation: Union[float, Sequence[float]] = 0., | |
hue: Union[float, Sequence[float]] = 0., | |
backend='pillow'): | |
self.brightness = self._set_range(brightness, 'brightness') | |
self.contrast = self._set_range(contrast, 'contrast') | |
self.saturation = self._set_range(saturation, 'saturation') | |
self.hue = self._set_range(hue, 'hue', center=0, bound=(-0.5, 0.5)) | |
self.backend = backend | |
def _set_range(self, value, name, center=1, bound=(0, float('inf'))): | |
"""Set the range of magnitudes.""" | |
if isinstance(value, numbers.Number): | |
if value < 0: | |
raise ValueError( | |
f'If {name} is a single number, it must be non negative.') | |
value = (center - float(value), center + float(value)) | |
if isinstance(value, (tuple, list)) and len(value) == 2: | |
if not bound[0] <= value[0] <= value[1] <= bound[1]: | |
value = np.clip(value, bound[0], bound[1]) | |
from mmengine.logging import MMLogger | |
logger = MMLogger.get_current_instance() | |
logger.warning(f'ColorJitter {name} values exceed the bound ' | |
f'{bound}, clipped to the bound.') | |
else: | |
raise TypeError(f'{name} should be a single number ' | |
'or a list/tuple with length 2.') | |
# if value is 0 or (1., 1.) for brightness/contrast/saturation | |
# or (0., 0.) for hue, do nothing | |
if value[0] == value[1] == center: | |
value = None | |
else: | |
value = tuple(value) | |
return value | |
def _rand_params(self): | |
"""Get random parameters including magnitudes and indices of | |
transforms.""" | |
trans_inds = np.random.permutation(4) | |
b, c, s, h = (None, ) * 4 | |
if self.brightness is not None: | |
b = np.random.uniform(self.brightness[0], self.brightness[1]) | |
if self.contrast is not None: | |
c = np.random.uniform(self.contrast[0], self.contrast[1]) | |
if self.saturation is not None: | |
s = np.random.uniform(self.saturation[0], self.saturation[1]) | |
if self.hue is not None: | |
h = np.random.uniform(self.hue[0], self.hue[1]) | |
return trans_inds, b, c, s, h | |
def transform(self, results: Dict) -> Dict: | |
"""Transform function to resize images. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: ColorJitter results, 'img' key is updated in result dict. | |
""" | |
img = results['img'] | |
trans_inds, brightness, contrast, saturation, hue = self._rand_params() | |
for index in trans_inds: | |
if index == 0 and brightness is not None: | |
img = mmcv.adjust_brightness( | |
img, brightness, backend=self.backend) | |
elif index == 1 and contrast is not None: | |
img = mmcv.adjust_contrast(img, contrast, backend=self.backend) | |
elif index == 2 and saturation is not None: | |
img = mmcv.adjust_color( | |
img, alpha=saturation, backend=self.backend) | |
elif index == 3 and hue is not None: | |
img = mmcv.adjust_hue(img, hue, backend=self.backend) | |
results['img'] = img | |
return results | |
def __repr__(self): | |
"""Print the basic information of the transform. | |
Returns: | |
str: Formatted string. | |
""" | |
repr_str = self.__class__.__name__ | |
repr_str += f'(brightness={self.brightness}, ' | |
repr_str += f'contrast={self.contrast}, ' | |
repr_str += f'saturation={self.saturation}, ' | |
repr_str += f'hue={self.hue})' | |
return repr_str | |
class Lighting(BaseTransform): | |
"""Adjust images lighting using AlexNet-style PCA jitter. | |
**Required Keys:** | |
- img | |
**Modified Keys:** | |
- img | |
Args: | |
eigval (Sequence[float]): the eigenvalue of the convariance matrix | |
of pixel values, respectively. | |
eigvec (list[list]): the eigenvector of the convariance matrix of | |
pixel values, respectively. | |
alphastd (float): The standard deviation for distribution of alpha. | |
Defaults to 0.1. | |
to_rgb (bool): Whether to convert img to rgb. Defaults to False. | |
""" | |
def __init__(self, | |
eigval: Sequence[float], | |
eigvec: Sequence[float], | |
alphastd: float = 0.1, | |
to_rgb: bool = False): | |
assert isinstance(eigval, Sequence), \ | |
f'eigval must be Sequence, got {type(eigval)} instead.' | |
assert isinstance(eigvec, Sequence), \ | |
f'eigvec must be Sequence, got {type(eigvec)} instead.' | |
for vec in eigvec: | |
assert isinstance(vec, Sequence) and len(vec) == len(eigvec[0]), \ | |
'eigvec must contains lists with equal length.' | |
assert isinstance(alphastd, float), 'alphastd should be of type ' \ | |
f'float or int, got {type(alphastd)} instead.' | |
self.eigval = np.array(eigval) | |
self.eigvec = np.array(eigvec) | |
self.alphastd = alphastd | |
self.to_rgb = to_rgb | |
def transform(self, results: Dict) -> Dict: | |
"""Transform function to resize images. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Lightinged results, 'img' key is updated in result dict. | |
""" | |
assert 'img' in results, 'No `img` field in the input.' | |
img = results['img'] | |
img_lighting = mmcv.adjust_lighting( | |
img, | |
self.eigval, | |
self.eigvec, | |
alphastd=self.alphastd, | |
to_rgb=self.to_rgb) | |
results['img'] = img_lighting.astype(img.dtype) | |
return results | |
def __repr__(self): | |
"""Print the basic information of the transform. | |
Returns: | |
str: Formatted string. | |
""" | |
repr_str = self.__class__.__name__ | |
repr_str += f'(eigval={self.eigval.tolist()}, ' | |
repr_str += f'eigvec={self.eigvec.tolist()}, ' | |
repr_str += f'alphastd={self.alphastd}, ' | |
repr_str += f'to_rgb={self.to_rgb})' | |
return repr_str | |
# 'Albu' is used in previous versions of mmpretrain, here is for compatibility | |
# users can use both 'Albumentations' and 'Albu'. | |
class Albumentations(BaseTransform): | |
"""Wrapper to use augmentation from albumentations library. | |
**Required Keys:** | |
- img | |
**Modified Keys:** | |
- img | |
- img_shape | |
Adds custom transformations from albumentations library. | |
More details can be found in | |
`Albumentations <https://albumentations.readthedocs.io>`_. | |
An example of ``transforms`` is as followed: | |
.. code-block:: | |
[ | |
dict( | |
type='ShiftScaleRotate', | |
shift_limit=0.0625, | |
scale_limit=0.0, | |
rotate_limit=0, | |
interpolation=1, | |
p=0.5), | |
dict( | |
type='RandomBrightnessContrast', | |
brightness_limit=[0.1, 0.3], | |
contrast_limit=[0.1, 0.3], | |
p=0.2), | |
dict(type='ChannelShuffle', p=0.1), | |
dict( | |
type='OneOf', | |
transforms=[ | |
dict(type='Blur', blur_limit=3, p=1.0), | |
dict(type='MedianBlur', blur_limit=3, p=1.0) | |
], | |
p=0.1), | |
] | |
Args: | |
transforms (List[Dict]): List of albumentations transform configs. | |
keymap (Optional[Dict]): Mapping of mmpretrain to albumentations | |
fields, in format {'input key':'albumentation-style key'}. | |
Defaults to None. | |
Example: | |
>>> import mmcv | |
>>> from mmpretrain.datasets import Albumentations | |
>>> transforms = [ | |
... dict( | |
... type='ShiftScaleRotate', | |
... shift_limit=0.0625, | |
... scale_limit=0.0, | |
... rotate_limit=0, | |
... interpolation=1, | |
... p=0.5), | |
... dict( | |
... type='RandomBrightnessContrast', | |
... brightness_limit=[0.1, 0.3], | |
... contrast_limit=[0.1, 0.3], | |
... p=0.2), | |
... dict(type='ChannelShuffle', p=0.1), | |
... dict( | |
... type='OneOf', | |
... transforms=[ | |
... dict(type='Blur', blur_limit=3, p=1.0), | |
... dict(type='MedianBlur', blur_limit=3, p=1.0) | |
... ], | |
... p=0.1), | |
... ] | |
>>> albu = Albumentations(transforms) | |
>>> data = {'img': mmcv.imread('./demo/demo.JPEG')} | |
>>> data = albu(data) | |
>>> print(data['img'].shape) | |
(375, 500, 3) | |
""" | |
def __init__(self, transforms: List[Dict], keymap: Optional[Dict] = None): | |
if albumentations is None: | |
raise RuntimeError('albumentations is not installed') | |
else: | |
from albumentations import Compose as albu_Compose | |
assert isinstance(transforms, list), 'transforms must be a list.' | |
if keymap is not None: | |
assert isinstance(keymap, dict), 'keymap must be None or a dict. ' | |
self.transforms = transforms | |
self.aug = albu_Compose( | |
[self.albu_builder(t) for t in self.transforms]) | |
if not keymap: | |
self.keymap_to_albu = dict(img='image') | |
else: | |
self.keymap_to_albu = keymap | |
self.keymap_back = {v: k for k, v in self.keymap_to_albu.items()} | |
def albu_builder(self, cfg: Dict): | |
"""Import a module from albumentations. | |
It inherits some of :func:`build_from_cfg` logic. | |
Args: | |
cfg (dict): Config dict. It should at least contain the key "type". | |
Returns: | |
obj: The constructed object. | |
""" | |
assert isinstance(cfg, dict) and 'type' in cfg, 'each item in ' \ | |
"transforms must be a dict with keyword 'type'." | |
args = cfg.copy() | |
obj_type = args.pop('type') | |
if mmengine.is_str(obj_type): | |
obj_cls = getattr(albumentations, obj_type) | |
elif inspect.isclass(obj_type): | |
obj_cls = obj_type | |
else: | |
raise TypeError( | |
f'type must be a str or valid type, but got {type(obj_type)}') | |
if 'transforms' in args: | |
args['transforms'] = [ | |
self.albu_builder(transform) | |
for transform in args['transforms'] | |
] | |
return obj_cls(**args) | |
def mapper(d, keymap): | |
"""Dictionary mapper. | |
Renames keys according to keymap provided. | |
Args: | |
d (dict): old dict | |
keymap (dict): {'old_key':'new_key'} | |
Returns: | |
dict: new dict. | |
""" | |
updated_dict = {} | |
for k, v in zip(d.keys(), d.values()): | |
new_k = keymap.get(k, k) | |
updated_dict[new_k] = d[k] | |
return updated_dict | |
def transform(self, results: Dict) -> Dict: | |
"""Transform function to perform albumentations transforms. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Transformed results, 'img' and 'img_shape' keys are | |
updated in result dict. | |
""" | |
assert 'img' in results, 'No `img` field in the input.' | |
# dict to albumentations format | |
results = self.mapper(results, self.keymap_to_albu) | |
results = self.aug(**results) | |
# back to the original format | |
results = self.mapper(results, self.keymap_back) | |
results['img_shape'] = results['img'].shape[:2] | |
return results | |
def __repr__(self): | |
"""Print the basic information of the transform. | |
Returns: | |
str: Formatted string. | |
""" | |
repr_str = self.__class__.__name__ | |
repr_str += f'(transforms={repr(self.transforms)})' | |
return repr_str | |
class SimMIMMaskGenerator(BaseTransform): | |
"""Generate random block mask for each Image. | |
**Added Keys**: | |
- mask | |
This module is used in SimMIM to generate masks. | |
Args: | |
input_size (int): Size of input image. Defaults to 192. | |
mask_patch_size (int): Size of each block mask. Defaults to 32. | |
model_patch_size (int): Patch size of each token. Defaults to 4. | |
mask_ratio (float): The mask ratio of image. Defaults to 0.6. | |
""" | |
def __init__(self, | |
input_size: int = 192, | |
mask_patch_size: int = 32, | |
model_patch_size: int = 4, | |
mask_ratio: float = 0.6): | |
self.input_size = input_size | |
self.mask_patch_size = mask_patch_size | |
self.model_patch_size = model_patch_size | |
self.mask_ratio = mask_ratio | |
assert self.input_size % self.mask_patch_size == 0 | |
assert self.mask_patch_size % self.model_patch_size == 0 | |
self.rand_size = self.input_size // self.mask_patch_size | |
self.scale = self.mask_patch_size // self.model_patch_size | |
self.token_count = self.rand_size**2 | |
self.mask_count = int(np.ceil(self.token_count * self.mask_ratio)) | |
def transform(self, results: dict) -> dict: | |
"""Method to generate random block mask for each Image in SimMIM. | |
Args: | |
results (dict): Result dict from previous pipeline. | |
Returns: | |
dict: Result dict with added key ``mask``. | |
""" | |
mask_idx = np.random.permutation(self.token_count)[:self.mask_count] | |
mask = np.zeros(self.token_count, dtype=int) | |
mask[mask_idx] = 1 | |
mask = mask.reshape((self.rand_size, self.rand_size)) | |
mask = mask.repeat(self.scale, axis=0).repeat(self.scale, axis=1) | |
results.update({'mask': mask}) | |
return results | |
def __repr__(self) -> str: | |
repr_str = self.__class__.__name__ | |
repr_str += f'(input_size={self.input_size}, ' | |
repr_str += f'mask_patch_size={self.mask_patch_size}, ' | |
repr_str += f'model_patch_size={self.model_patch_size}, ' | |
repr_str += f'mask_ratio={self.mask_ratio})' | |
return repr_str | |
class BEiTMaskGenerator(BaseTransform): | |
"""Generate mask for image. | |
**Added Keys**: | |
- mask | |
This module is borrowed from | |
https://github.com/microsoft/unilm/tree/master/beit | |
Args: | |
input_size (int): The size of input image. | |
num_masking_patches (int): The number of patches to be masked. | |
min_num_patches (int): The minimum number of patches to be masked | |
in the process of generating mask. Defaults to 4. | |
max_num_patches (int, optional): The maximum number of patches to be | |
masked in the process of generating mask. Defaults to None. | |
min_aspect (float): The minimum aspect ratio of mask blocks. Defaults | |
to 0.3. | |
min_aspect (float, optional): The minimum aspect ratio of mask blocks. | |
Defaults to None. | |
""" | |
def __init__(self, | |
input_size: int, | |
num_masking_patches: int, | |
min_num_patches: int = 4, | |
max_num_patches: Optional[int] = None, | |
min_aspect: float = 0.3, | |
max_aspect: Optional[float] = None) -> None: | |
if not isinstance(input_size, tuple): | |
input_size = (input_size, ) * 2 | |
self.height, self.width = input_size | |
self.num_patches = self.height * self.width | |
self.num_masking_patches = num_masking_patches | |
self.min_num_patches = min_num_patches | |
self.max_num_patches = num_masking_patches if max_num_patches is None \ | |
else max_num_patches | |
max_aspect = max_aspect or 1 / min_aspect | |
self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect)) | |
def _mask(self, mask: np.ndarray, max_mask_patches: int) -> int: | |
"""Generate mask recursively. | |
Args: | |
mask (np.ndarray): The mask to be generated. | |
max_mask_patches (int): The maximum number of patches to be masked. | |
Returns: | |
int: The number of patches masked. | |
""" | |
delta = 0 | |
for _ in range(10): | |
target_area = np.random.uniform(self.min_num_patches, | |
max_mask_patches) | |
aspect_ratio = math.exp(np.random.uniform(*self.log_aspect_ratio)) | |
h = int(round(math.sqrt(target_area * aspect_ratio))) | |
w = int(round(math.sqrt(target_area / aspect_ratio))) | |
if w < self.width and h < self.height: | |
top = np.random.randint(0, self.height - h) | |
left = np.random.randint(0, self.width - w) | |
num_masked = mask[top:top + h, left:left + w].sum() | |
# Overlap | |
if 0 < h * w - num_masked <= max_mask_patches: | |
for i in range(top, top + h): | |
for j in range(left, left + w): | |
if mask[i, j] == 0: | |
mask[i, j] = 1 | |
delta += 1 | |
if delta > 0: | |
break | |
return delta | |
def transform(self, results: dict) -> dict: | |
"""Method to generate random block mask for each Image in BEiT. | |
Args: | |
results (dict): Result dict from previous pipeline. | |
Returns: | |
dict: Result dict with added key ``mask``. | |
""" | |
mask = np.zeros(shape=(self.height, self.width), dtype=int) | |
mask_count = 0 | |
while mask_count != self.num_masking_patches: | |
max_mask_patches = self.num_masking_patches - mask_count | |
max_mask_patches = min(max_mask_patches, self.max_num_patches) | |
delta = self._mask(mask, max_mask_patches) | |
mask_count += delta | |
results.update({'mask': mask}) | |
return results | |
def __repr__(self) -> str: | |
repr_str = self.__class__.__name__ | |
repr_str += f'(height={self.height}, ' | |
repr_str += f'width={self.width}, ' | |
repr_str += f'num_patches={self.num_patches}, ' | |
repr_str += f'num_masking_patches={self.num_masking_patches}, ' | |
repr_str += f'min_num_patches={self.min_num_patches}, ' | |
repr_str += f'max_num_patches={self.max_num_patches}, ' | |
repr_str += f'log_aspect_ratio={self.log_aspect_ratio})' | |
return repr_str | |
class RandomResizedCropAndInterpolationWithTwoPic(BaseTransform): | |
"""Crop the given PIL Image to random size and aspect ratio with random | |
interpolation. | |
**Required Keys**: | |
- img | |
**Modified Keys**: | |
- img | |
**Added Keys**: | |
- target_img | |
This module is borrowed from | |
https://github.com/microsoft/unilm/tree/master/beit. | |
A crop of random size (default: of 0.08 to 1.0) of the original size and a | |
random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio | |
is made. This crop is finally resized to given size. This is popularly used | |
to train the Inception networks. This module first crops the image and | |
resizes the crop to two different sizes. | |
Args: | |
size (Union[tuple, int]): Expected output size of each edge of the | |
first image. | |
second_size (Union[tuple, int], optional): Expected output size of each | |
edge of the second image. | |
scale (tuple[float, float]): Range of size of the origin size cropped. | |
Defaults to (0.08, 1.0). | |
ratio (tuple[float, float]): Range of aspect ratio of the origin aspect | |
ratio cropped. Defaults to (3./4., 4./3.). | |
interpolation (str): The interpolation for the first image. Defaults | |
to ``bilinear``. | |
second_interpolation (str): The interpolation for the second image. | |
Defaults to ``lanczos``. | |
""" | |
def __init__(self, | |
size: Union[tuple, int], | |
second_size=None, | |
scale=(0.08, 1.0), | |
ratio=(3. / 4., 4. / 3.), | |
interpolation='bilinear', | |
second_interpolation='lanczos') -> None: | |
if isinstance(size, tuple): | |
self.size = size | |
else: | |
self.size = (size, size) | |
if second_size is not None: | |
if isinstance(second_size, tuple): | |
self.second_size = second_size | |
else: | |
self.second_size = (second_size, second_size) | |
else: | |
self.second_size = None | |
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): | |
('range should be of kind (min, max)') | |
if interpolation == 'random': | |
self.interpolation = ('bilinear', 'bicubic') | |
else: | |
self.interpolation = interpolation | |
self.second_interpolation = second_interpolation | |
self.scale = scale | |
self.ratio = ratio | |
def get_params(img: np.ndarray, scale: tuple, | |
ratio: tuple) -> Sequence[int]: | |
"""Get parameters for ``crop`` for a random sized crop. | |
Args: | |
img (np.ndarray): Image to be cropped. | |
scale (tuple): range of size of the origin size cropped | |
ratio (tuple): range of aspect ratio of the origin aspect | |
ratio cropped | |
Returns: | |
tuple: params (i, j, h, w) to be passed to ``crop`` for a random | |
sized crop. | |
""" | |
img_h, img_w = img.shape[:2] | |
area = img_h * img_w | |
for _ in range(10): | |
target_area = np.random.uniform(*scale) * area | |
log_ratio = (math.log(ratio[0]), math.log(ratio[1])) | |
aspect_ratio = math.exp(np.random.uniform(*log_ratio)) | |
w = int(round(math.sqrt(target_area * aspect_ratio))) | |
h = int(round(math.sqrt(target_area / aspect_ratio))) | |
if w < img_w and h < img_h: | |
i = np.random.randint(0, img_h - h) | |
j = np.random.randint(0, img_w - w) | |
return i, j, h, w | |
# Fallback to central crop | |
in_ratio = img_w / img_h | |
if in_ratio < min(ratio): | |
w = img_w | |
h = int(round(w / min(ratio))) | |
elif in_ratio > max(ratio): | |
h = img_h | |
w = int(round(h * max(ratio))) | |
else: # whole image | |
w = img_w | |
h = img_h | |
i = (img_h - h) // 2 | |
j = (img_w - w) // 2 | |
return i, j, h, w | |
def transform(self, results: dict) -> dict: | |
"""Crop the given image and resize it to two different sizes. | |
This module crops the given image randomly and resize the crop to two | |
different sizes. This is popularly used in BEiT-style masked image | |
modeling, where an off-the-shelf model is used to provide the target. | |
Args: | |
results (dict): Results from previous pipeline. | |
Returns: | |
dict: Results after applying this transformation. | |
""" | |
img = results['img'] | |
i, j, h, w = self.get_params(img, self.scale, self.ratio) | |
if isinstance(self.interpolation, (tuple, list)): | |
interpolation = np.random.choice(self.interpolation) | |
else: | |
interpolation = self.interpolation | |
if self.second_size is None: | |
img = img[i:i + h, j:j + w] | |
img = mmcv.imresize(img, self.size, interpolation=interpolation) | |
results.update({'img': img}) | |
else: | |
img = img[i:i + h, j:j + w] | |
img_sample = mmcv.imresize( | |
img, self.size, interpolation=interpolation) | |
img_target = mmcv.imresize( | |
img, self.second_size, interpolation=self.second_interpolation) | |
results.update({'img': [img_sample, img_target]}) | |
return results | |
def __repr__(self) -> str: | |
repr_str = self.__class__.__name__ | |
repr_str += f'(size={self.size}, ' | |
repr_str += f'second_size={self.second_size}, ' | |
repr_str += f'interpolation={self.interpolation}, ' | |
repr_str += f'second_interpolation={self.second_interpolation}, ' | |
repr_str += f'scale={self.scale}, ' | |
repr_str += f'ratio={self.ratio})' | |
return repr_str | |
class CleanCaption(BaseTransform): | |
"""Clean caption text. | |
Remove some useless punctuation for the caption task. | |
**Required Keys:** | |
- ``*keys`` | |
**Modified Keys:** | |
- ``*keys`` | |
Args: | |
keys (Sequence[str], optional): The keys of text to be cleaned. | |
Defaults to 'gt_caption'. | |
remove_chars (str): The characters to be removed. Defaults to | |
:py:attr:`string.punctuation`. | |
lowercase (bool): Whether to convert the text to lowercase. | |
Defaults to True. | |
remove_dup_space (bool): Whether to remove duplicated whitespaces. | |
Defaults to True. | |
strip (bool): Whether to remove leading and trailing whitespaces. | |
Defaults to True. | |
""" | |
def __init__( | |
self, | |
keys='gt_caption', | |
remove_chars=string.punctuation, | |
lowercase=True, | |
remove_dup_space=True, | |
strip=True, | |
): | |
if isinstance(keys, str): | |
keys = [keys] | |
self.keys = keys | |
self.transtab = str.maketrans({ch: None for ch in remove_chars}) | |
self.lowercase = lowercase | |
self.remove_dup_space = remove_dup_space | |
self.strip = strip | |
def _clean(self, text): | |
"""Perform text cleaning before tokenizer.""" | |
if self.strip: | |
text = text.strip() | |
text = text.translate(self.transtab) | |
if self.remove_dup_space: | |
text = re.sub(r'\s{2,}', ' ', text) | |
if self.lowercase: | |
text = text.lower() | |
return text | |
def clean(self, text): | |
"""Perform text cleaning before tokenizer.""" | |
if isinstance(text, (list, tuple)): | |
return [self._clean(item) for item in text] | |
elif isinstance(text, str): | |
return self._clean(text) | |
else: | |
raise TypeError('text must be a string or a list of strings') | |
def transform(self, results: dict) -> dict: | |
"""Method to clean the input text data.""" | |
for key in self.keys: | |
results[key] = self.clean(results[key]) | |
return results | |
class OFAAddObjects(BaseTransform): | |
def transform(self, results: dict) -> dict: | |
if 'objects' not in results: | |
raise ValueError( | |
'Some OFA fine-tuned models requires `objects` field in the ' | |
'dataset, which is generated by VinVL. Or please use ' | |
'zero-shot configs. See ' | |
'https://github.com/OFA-Sys/OFA/issues/189') | |
if 'question' in results: | |
prompt = '{} object: {}'.format( | |
results['question'], | |
' '.join(results['objects']), | |
) | |
results['decoder_prompt'] = prompt | |
results['question'] = prompt | |
class RandomTranslatePad(BaseTransform): | |
def __init__(self, size=640, aug_translate=False): | |
self.size = size | |
self.aug_translate = aug_translate | |
def rand_translate_params(self, dh, dw): | |
top = np.random.randint(0, dh) | |
left = np.random.randint(0, dw) | |
return top, left | |
def transform(self, results: dict) -> dict: | |
img = results['img'] | |
h, w = img.shape[:-1] | |
dw = self.size - w | |
dh = self.size - h | |
if self.aug_translate: | |
top, left = self.rand_translate_params(dh, dw) | |
else: | |
top = round(dh / 2.0 - 0.1) | |
left = round(dw / 2.0 - 0.1) | |
out_img = np.zeros((self.size, self.size, 3), dtype=np.float32) | |
out_img[top:top + h, left:left + w, :] = img | |
results['img'] = out_img | |
results['img_shape'] = (self.size, self.size) | |
# translate box | |
if 'gt_bboxes' in results.keys(): | |
for i in range(len(results['gt_bboxes'])): | |
box = results['gt_bboxes'][i] | |
box[0], box[2] = box[0] + left, box[2] + left | |
box[1], box[3] = box[1] + top, box[3] + top | |
results['gt_bboxes'][i] = box | |
return results | |
class MAERandomResizedCrop(transforms.RandomResizedCrop): | |
"""RandomResizedCrop for matching TF/TPU implementation: no for-loop is | |
used. | |
This may lead to results different with torchvision's version. | |
Following BYOL's TF code: | |
https://github.com/deepmind/deepmind-research/blob/master/byol/utils/dataset.py#L206 # noqa: E501 | |
""" | |
def get_params(img: Image.Image, scale: tuple, ratio: tuple) -> Tuple: | |
width, height = img.size | |
area = height * width | |
target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item() | |
log_ratio = torch.log(torch.tensor(ratio)) | |
aspect_ratio = torch.exp( | |
torch.empty(1).uniform_(log_ratio[0], log_ratio[1])).item() | |
w = int(round(math.sqrt(target_area * aspect_ratio))) | |
h = int(round(math.sqrt(target_area / aspect_ratio))) | |
w = min(w, width) | |
h = min(h, height) | |
i = torch.randint(0, height - h + 1, size=(1, )).item() | |
j = torch.randint(0, width - w + 1, size=(1, )).item() | |
return i, j, h, w | |
def forward(self, results: dict) -> dict: | |
"""The forward function of MAERandomResizedCrop. | |
Args: | |
results (dict): The results dict contains the image and all these | |
information related to the image. | |
Returns: | |
dict: The results dict contains the cropped image and all these | |
information related to the image. | |
""" | |
img = results['img'] | |
i, j, h, w = self.get_params(img, self.scale, self.ratio) | |
img = F.resized_crop(img, i, j, h, w, self.size, self.interpolation) | |
results['img'] = img | |
return results | |